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ABSTRACT 

This study presents a reliability-based design optimization (RBDO) method using the probability density evolution method 

(PDEM) of a steel moment resisting frame coupled with a self-centering viscous damper to estimate the structural design 

parameters when the structure is subjected to earthquakes. RBDO minimizes the cost function in terms of the probability of 

failure of the structure in an efficient manner. The PDEM is a well-known reliability analysis method that computes the 

probability density function of the limit state function by solving a partial differential equation (PDE). The failure probability 

is estimated by integrating the probability density function of the limit state function over the failure domain. In general, PDEs 

are solved using the finite difference, finite element, or finite volume methods. RBDO may require many simulations to 

compute a small failure probability, which leads to computationally expensive solutions for PDEs using traditional methods. 

In this study, physics-informed neural networks (PINN), a class of machine learning framework, are used to solve the PDE 

involved in PDEM. PINN is a feedforward neural network that is trained by the physics knowledge involved in PDEs, i.e., the 

loss function is constructed as a sum of initial, boundary conditions, and state transitions governed by PDEs. In this study, a 

16-storey steel moment resisting frame equipped with self-centering viscous dampers at each floor is considered for numerical 

demonstration. Two types of ensembles of ground motions, i.e., far-field and near-field records, are taken from FEMA P695. 

The objective of this study is to estimate the design parameters related to a self-centering viscous damper under ground motion 

uncertainty by minimizing the probability of failure of the maximum inter-storey drift ratio among all floors. The numerical 

demonstration shows the efficiency of the proposed RBDO framework over the traditional design of the self-centering viscous 

damper system.   

Keywords: Reliability Based Design Optimization, Probability Density Evolution Method, Physics-Informed Neural Network, 

Deep Learning, Self-Centering Viscous Damper. 

INTRODUCTION 

In the past decade, reliability-based design optimization (RBDO) has become an open area of research for estimating the 

structural design parameters when structures are exposed to uncertainties associated with future seismic events. RBDO 

minimizes the cost function in terms of the probability of failure in an efficient manner. Different methods are used to estimate 

the probability of failure, such as the analytical approximation method, the numerical sampling-based method, the surrogate-

based method, and the numerical integration method. The first-order and second-order reliability methods are common and 

belong to the analytical approximation method. In these methods, the limit state function is approximated about the most 

probable point using Taylor’s expansion, which leads to inaccurate results when the limit state function is complex or multiple 

most probable points exist. The numerical sampling-based method includes the Monte Carlo method [1], subset simulation [2], 

importance sampling [3], etc., which produces more accurate results compared to the analytical approximation method. The 

main drawback of these methods is their computational cost because they require multiple model evaluations, which can be 

expensive for complex models or when estimating low failure probabilities. To reduce the computational cost, the surrogate-

based methods are one of the alternative solutions that approximates the original limit state function based on a few 

observations. Kriging [4], polynomial chaos expansion [5], support vector machine [6], artificial neural network [7], etc. are 

some of the common surrogate models. Despite the advantages of the above-mentioned methods, there are a few limitations to 

each one. Therefore, the estimation of the probability density function (PDF) of the limit state function is an attractive option 
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by which the probability of failure is estimated by the PDF of the limit state function over the failure region. This method is 

known as the numerical integration method. In this study, the numerical integration method is adopted for estimating the 

probability of failure of the system. 

There are different methods available to estimate the PDF of the limit state function, such as the central moments [8], the 

fractional moments [9], the point estimation method [10], the cubature formulation method [11], etc. The Fokker-Planck-

Kolmogorov (FPK) equation is one of the common methods to estimate the transition PDF. Frank et al. [12] used the FPK 

equation to estimate the transition PDF of the structural response subjected to Gaussian white noise. Due to the complexity of 

the FPK equation, the applications of this method are limited. However, to overcome this complexity in the solution of the FPK 

method, the equivalent linearization method [13], the perturbation method [14], and the stochastic averaging method [15] are 

proposed. The majority of the aforementioned works concentrate on the stationary solution estimated using the FPK equation. 

The first-passage failure probability must be determined using the transient solution. Because the stationary condition may not 

be reached before the first passage failure occurs. As the evolution equation is coupled with the physical system in the FPK 

equation, it is challenging to estimate the transient solution of the FPK equation for a highly nonlinear system with many 

degrees of freedom. 

To overcome this issue, Li and Chen [16] proposed the probability density evolution method (PDEM), in which the principle 

of probability conservation was used to derive the generalized density evolution method (GDEE) involved in PDEM. The 

GDEE has an advantage over the FPK equation in that the evolution equation is entirely uncoupled from the physical system. 

The stochastic response analysis of a 15-storey nonlinear shear building frame under non-stationary ground motion was studied 

by Xu and Feng [17] using PDEM. For the time-variant reliability assessment of deteriorating structures, Wan et al. [18] 

proposed an effective PDEM algorithm based on changes in probability measure. By utilising PDEM to evaluate the 

probabilistic response of the structure, Xu et al. [19] investigated the reliability analysis of the shell structure coupled with a 

viscoelastic damper. The above studies utilized finite difference method with total variation diminishing (TVD) to solve the 

GDEE, in which the proper strategy for generating the representative points of random variables present in the system was used 

so that the representative points should cover the entire domain and PDEM can produce an accurate estimation of PDF. The 

GF discrepancy-based method [20] is widely used in PDEM to generate the representative points of the random variables. A 

high number of representative points is necessary for the numerical method of solving the evolution equation in PDEM. As a 

result, RBDO requires a lot of computational time, which could be inefficient. In this study, a physics-informed neural network 

(PINN)-based PDEM framework is proposed that not only predicts the PDF but is also used as a solver. PINN is a cutting-edge 

deep learning technique proposed by Raissi and Karniadakis [21] that forces physical constraints on neural networks. It is a 

feed-forward neural network in which the loss function is constructed considering the governing physical laws in the form of 

an ordinary differential equation (ODE) or a partial differential equation (PDE), the initial and boundary conditions of the 

system. There are few applications related to reliability analysis using PINN includes [22-23]. 

In this study, a 16-storey steel moment resisting (MR) frame coupled with a self-centering damper is considered to estimate the 

design parameters of the damper using RBDO so that the proposed system can show the effective performance when subjected 

to a future seismic event. In general, the MR frame is designed in such a way that earthquake-induced vibration is mitigated 

through the inelastic deformation of the structural members. As a consequence, large residual deformation is often seen, which 

leads to damage in structural members [24]. Self-centering dampers are one of the alternatives that can reduce the residual 

deformation of the structural system susceptible to seismic loads. There have been numerous self-centering devices reported in 

the literature, such as post-tensioned braces [25], shape memory alloy [26], ring springs [27], etc. Among these, viscous 

dampers have been widely used in self-centering systems to reduce earthquake-induced vibration [28]. By combining a flag-

shaped system with various energy dissipation components, such as hysteretic, viscous, and viscoelasto-plastic connected in 

series or parallel, Kam et al. [28] proposed various self-centering systems. The performance of the proposed controllers was 

established under an ensemble of far-field and near-field ground motions. Dong et al. [29] studied the inelastic response spectra 

of the self-centering structure with the flag-shaped hysteretic response under near-fault pulse-type ground motions. Kitayama 

and Constantinou [30] evaluated the building's residual drift and probabilistic collapse resistance using fluidic self-centering 

devices. 

Since the self-centering viscous (SC-VD) damper is a passive device, it is necessary to optimize the design of passive devices 

under uncertainty to guarantee the controller will function satisfactorily for the duration of its service life. Therefore, the RBDO 

method is used in this study to estimate the optimal parameters related to the hysteresis of SC-VD. The probability of failure 

of the structural system is estimated using the PDF of the limit state function, which is evaluated using a PINN-based PDEM 

framework. In light of this, the current work sets the following objectives in order to evaluate the reliability-based design of 

the SC-VD in the presence of uncertainties- 

• Using OpenSees, develop a model of a high-rise steel moment-resisting frame coupled with a self-centering viscous 

damper placed at every floor. 
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• Develop a physics-informed neural network-based probability density evolution framework for estimating the 

transition probability density function of the performance function, which is used to calculate the first-passage failure 

probability of the structure. 

• Investigate the proposed control strategy's performance range in various operational scenarios. 

MODELING OF STEEL MR-FRAME WITH SC-VD 

In this section, a brief description of force-displacement hysteresis of SC-VD is illustrated. The hysteresis of SC-VD is modeled 

in OpenSees as a combination of the hysteresis of a self-centering (SC) damper and a viscous damper, as shown in Figure 1. 

The flag-shaped hysteresis of an SC damper (in Figure 1(a)) is characterized by an initial stiffness, k1, a post-activation stiffness, 

k2, activation force, F0 and an energy dissipation factor, β. The parameter β is the ratio of forward to reverse activation force. 

Similarly, the force-displacement hysteresis of the viscous damper (in Figure 1(b)) is expressed in the following form: 

   = | | sgn( )d

d
F C u u

 (1) 

where the force offered by the viscous damper and the displacement of the damper are denoted by F and u, respectively. In Eq. 

(1), Cd and αd are the damping coefficient and damping exponent, respectively. The signum function is denoted by sgn(.), as in 

Eq. (1). In this study, a parallel connection between a viscous damper and a SC damper is used to assess the hysteresis response 

of the SC-VD. 

 

Figure 1. Force - displacement hysteresis of (a) SC damper; (b) Viscous damper and (c) SC-VD. 

In this study, a 16-storey steel moment-resistant (MR) frame with a self-centering viscous damper is modelled using the open-

source finite element modeling software OpenSees (Open System for Earthquake Engineering Simulation), shown in Figure 2. 

With a span length of 8 m, the building has three bays. Except for the first storey, whose height is 4.5 m above the ground, the 

building's storey height is 4 m. At roof level, the dead and live loads are assumed to be 1.68 kPa and 0.96 kPa, respectively. 

The weight of the cladding is 1.2 kPa, while the weights for the floor levels are respectively 3.35 kPa and 1.68 kPa. The steel 

MRF is modeled using the Hardening Material model from the OpenSees material library. The steel members' material 

parameters include a Young's modulus of 206 GPa, a yield strength of 345 MPa, a Poisson's ratio of 0.3, an isotropic hardening 

modulus of zero, and a kinematic hardening modulus of 1000 MPa. The beams and columns of the steel MRF are assumed to 

be wide-flange steel sections, whose cross-sectional properties are tabulated in Table 1. The beams and columns of the steel 

MR frame are modeled using the NonlinearBeamColumn element with Uniaxial Material Hardening model. Leaning columns 

with gravity loads are attached to the frame with truss elements in order to capture P-Delta effects. In Figure 2, it is shown that 

at every floor, self-centering viscous dampers are arranged diagonally. In OpenSees, a Two-node Link element is used, and two 

Uniaxial Materials - namely, SelfCentering Material and Viscous Material - are combined in parallel. The SelfCentering 

Material is characterized by four parameters, i.e., k1, k2, F0, and β and the viscous damper is modeled by Viscous Material 

model in the OpenSees material library, which has two parameters, i.e., Cd and αd, as shown in Figure 1. 
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Table 1. The cross-section properties of beam and column of 16-storey steel MR frame 

Property Storey 1-4 Storey 5-8 Storey 9-12  Storey 13-16 

 Beam Column Beam Column Beam Column Beam Column 

d (mm)  607.6 407.4  612.2 393.2 544.3  375.4   463.3  363.7 

bf (mm)  228.3 403.6 229.1 399.1 212.2  393.7   191.9  371.0 

tf (mm)    17.3   43.7  19.6   36.6   21.2    27.7  17.7    21.9 

tw (mm) 11.2   27.2  11.9   22.6   13.1    17.3  10.6    13.4 

nfdw    27   15    27    16     27    15     21    14 

nftw      2     2 2 2 2      2 2      2 

nfbf    10   15    10    16     10    15 9    14 

nftf 2     4 2 4 2      4 2      4 

 

d: Section depth; bf: Flange width; tf: Flange thickness; tw: Web thickness; nfdw: Number of fibers 

along web depth; nftw: Number of fibers along web thickness; nfbf: Number of fibers along flange 

width; nftf: Number of fibers along flange thickness. 

 

 

Figure 2. (a) Layout of 16-storey steel moment resisting frame with SC-VD; (b) Force - Displacement hysteresis of SC-VD; 

(c) Performance function and (d) Response surface of limit state function using PINN. 

FIRST-PASSAGE PROBABILITY ESTIMATION USING PDEM 

The probability density evolution method (PDEM), developed based on the principle of probability conservation, was proposed 

by Li and Chen [16] and is used in this study to estimate the PDF of a stochastic process. Assume that Y represents a system's 

state and that t is the parameter describing how that state evolves. The system's state shifts from Y(t) to Y(t + dt) during dt, the 

time step. On the other hand, it is assumed that the system's state at time t, Y(t), is a part of a region, which is indicated by Ωt. 

The state Y(t + dt)  corresponds to the area Ωt+dt at the time (t+dt). Additionally, it is assumed that the state Y(t) is a function 

of a set of random variables, Θ and that it remains unchanged for the duration of the stochastic process. The joint probability 

space by Y and Θ is then expressed as follows in accordance with the probability conservation principle. 

   
+  

+    =   
d

Pr ( d ), Pr ( ),{[ ] } {[ ] }
t t t

Y t t Y t  (2) 

where the domain of the random variables is denoted by ΩΘ. Eq. (2) can be used to formulate the generalized density evolution 

equation (GDEE) in the PDEM, which is given by 



Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023 

5 

 

    
 

+ =
 

( , , ) ( , , )
( , ) 0Y Y

p y t p y t
Y t

t y

 
  (3) 

The initial condition of the above partial differential equation is expressed as 

   
 = 

= −
0

( , , )| ( ,0) ( )[ ]
Y t

p y t y y p     (4) 

where pΘ(θ) is the joint PDF of the random variables, Θ and δ(.) denotes the Dirac delta function. The joint PDF between Y 

and Θ, i.e., pYΘ (y, θ, t) is estimated by solving Eq. (3) and Eq. (4) using physics-informed neural network, which is discussed 

in the following section. The PDF of Y, i.e., pY (y, t) is computed by integrating over region Θ which is given by 

   



= ( , ) ( , , )

Y Y
p y t p y t d   (5) 

This study considers the first-passage failure problem, in which the likelihood that a system will fail is expressed as 

   =   Pr ( ) , [0, ]{ }
f F

P Y t t T  (6) 

where Pr{.} denotes the probability operator, ΩF is the failure domain of 𝑌(𝑡) and the duration of time is represented by [0, 𝑇]. 

Using the principle of an equivalent extreme-value event, Eq. (6) can be reformulated as follows 

   =   
EEV

Pr , [0, ]{ }
f F

P Y t T  (7) 

where YEEV is the equivalent extreme value (EEV) of Y(t) within the duration [0, T] [31]. The probability of failure of the system 

can be estimated by integrating over the failure domain, is given by 

   


=  =  EEVThres
EEV Thres

Pr ( ){ }
f YY

P Y Y p y dy  (8) 

where 
EEVY

p denotes the PDF of EEV of Y(t) and the threshold value of the system is represented by YThres. It can be seen from 

Eq. (8) that YEEV is not time dependent function. Therefore, Eq. (3) cannot be used directly to estimate PDF of YEEV. To make 

YEEV into time dependent function, a virtual stochastic process is assumed which is given by 

   = 
EEV

( ) sin  ( ); [0, 1]Y    (9) 

where ω = 5π/2. It is seen from Eq. (9) that 
=
=

0
( )| 0


  and 

=
=

1 EEV
( )| Y


 . Therefore, GDEE in Eq. (3) can be used to estimate 

PDF of ( ) which is given by 

    

 = 

 
+ = =

 
0

   
( , , ) ( , , )

( , ) 0  ; ( , , )| ( ) ( )
p v p v

p v v p
v 

   
     


 (10) 

   



= ( , ) ( , , )p v p v d     (11) 

Once the PDF of ( )  is estimated, 
EEVY

p  is estimated by substituting τ equals to 1 into ( , )p v  , is expressed as follows 

   
= =

=
EEV , 1

( ) ( , )|
Y v y

p y p v


  (12) 

PHYSICS-INFORMED NEURAL NETWORK 

Physics-informed neural network (PINN), a class of feed-forward neural network, is one in which the network is subject to 

physical restrictions in the form of a loss function [21]. The PINN has the same architecture as any other feed-forward neural 

network, and its output is expressed as a nested nonlinear transformation of data from the network's hidden layers. Consider a 

nonlinear partial differential equation whose expression can be written as follows 
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

+ = = =


( , )
[ ( , ); ] 0; ( , ) ( , ); ( ,0) (              )

p y t
p y t p y t y t p y y

t
  (13) 

where p(y,t) is a function of spatial variable, y and temporal variable, t, is the solution of Eq. (13) which is estimated using 

PINN. In the above equation, [ ( , ); ]p y t  is the nonlinear differential operator and χ is the coefficient of the differential 

operator. Also, the boundary and initial conditions of the above partial differential equation are denoted by ( , )y t and ( )y

, respectively. To train the PINN, an N number of collocation points, i.e., 
=1

,{ }i i N

i
y t are generated from the domain 

 ,y t . To estimate the derivative of p(y,t) with respect to y and t at every collocation points, automatic differentiation 

is used. Therefore, loss functions including initial conditions and boundary conditions, as in Eq. (13) are evaluated using the 

obtained values of p(y,t) and its derivatives at every collocation points. Once the loss functions are evaluated, a weighted sum 

of loss function is constructed which is to minimized with the aim of minimal of difference between actual and predicted values 

of p(y,t). If the predicted values of p(y,t) converge with the actual values, i.e., the value of the weighted loss function is less 

than a specified tolerance, the algorithm is terminated; otherwise, update the weight and bias parameters of the neural network 

by minimizing weighted loss function using stochastic gradient descent method. The process continues until convergence is 

achieved. A schematic diagram of PINN is shown in Figure 3. 

 

Figure 3. Schematic diagram of physics-informed neural network. 

The loss function corresponding to Eq. (13) can be constructed in the following form: 

   
= =


= + = −


 

0
2 2

0 0 0
1 10

( , ; )1 1
( ) [ ( , ); ]     ; ( ) ( ,0; ) ( ,0) | | | |

p
i iN N
p p i i i i

p p p
i ip

p y t
p y t p y y

N t N


     (14) 

   
=

= − 2

1

1
( ) ( , ; ) ( , )| |

bN
i i i i

b b b b b
ib

p y t y t
N

   (15) 

To train the neural network, a weighted sum of the above loss functions is considered which is expressed as follows 

   = + +
1 0 2

( ) ( ) ( ) ( )
p b

       (16) 

where β1 and β2 are the weight parameters to adjust the relative importance of each residual term. To estimate the 

proper weight and bias parameters of the neural network, the weighted loss function in Eq. (16) is minimized so that the 



Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023 

7 

 

predicted value, p(y,t) from the PINN and the actual value, p(y,t) from the model evaluation converge. In this study, 

the stochastic gradient descent algorithm is used to estimate the weight and bias components of the neural network. 

RELIABILITY-BASED DESIGN OPTIMIZATION OF SC-VD 

In this study, PINN-based PDEM framework is adopted to compute the failure probability which is utilized for reliability-based 

design optimization of self-centering viscous damper (SC-VD). When the system operates in a stochastic environment, the SC-

VD with deterministic design provides unreliable performance. In order to ensure that the controller performs satisfactorily 

during anticipated future seismic occurrences, it must be designed (i.e., SC-VD related parameters must be tuned). For this 

purpose, maximum inter-storey drift ratio among all floors is assumed as an objective function to measure the efficiency of the 

controller. The probability of failure for this system is constructed as follows 

   ( ) 
= − 

F
kk [1,N ]f max

max IDP IDRRP r 0  (17) 

where IDRk is the maximum inter-storey drift ratio of kth floor where total number of floor is denoted by NF. Also, IDRmax is 

the maximum allowable inter-storey drift ratio which equals to 2.5% according to NBC 2015. Here, the uncertainty is 

considered to be associated with the ground motion only. For a set of tuning parameters (which is random) of SC-VD, the 

maximum inter-storey drift ratio among all floors is estimated for every ground motion. Once it is estimated for all ground 

motion corresponding to a set of tuning parameters, the PDF of IDR is estimated using PINN-based PDEM framework in which 

the loss function of the neural network is formed using Eq. (10) and Eq. (11), is given by  

   
( )

( )
( )

( ) ( ) ( )
 

 
= =

 
= + + −



  
 
  

 
p 0

2
i i i iN N 2p p p pi i

p 1 0
i 1 i 1p 0

p v , , ; p v , , ;1 1
( ) , p v , ,0; v p

N v N

     
       


 (18) 

Once the PDF of IDR is estimated using PINN-based PDEM and Eq. (12) for a given set of tuning parameters, the probability 

of failure is estimated by one-dimensional integration over failure region, is given by 

   


=  = 
max

max IDRIDRf
P Pr IDR IDR p (IDR)dIDR{ }  (19) 

Once the probability of failure is obtained using Eq. (19) for all values of tuning parameters of SC-VD, the RBDO problem is 

formulated as 

   ( )=   
 f

d

*

ll ul
argmin P d     d s.t. d d d   (20) 

where d is the tuning parameters of SC-VD i.e., initial stiffness (k1), post-activation stiffness (k2), forward activation force (F0), 

and the ratio of forward to reverse activation force (β) of the self-centering material, as well as the damping coefficient (Cd) of 

viscous material. The lower and upper bound of the design parameters are represented by dll and dul, respectively.  

NUMERICAL RESULTS & DISCUSSION 

A 16-storey steel MRF is used in this section to illustrate the reliability-based design optimization for a self-centering viscous 

damper (SC-VD). The SC-VD tuning parameters include the initial stiffness (k1), post-activation stiffness (k2), forward 

activation force (F0), the ratio of forward to reverse activation force (β) for the self-centering damper, and the damping 

coefficient (Cd) for the viscous damper (which is modelled in OpenSees as a combination of self-centering damper and viscous 

damper) are optimized in the light of ground motion uncertainty. Thus, two types of ensembles of ground acceleration records 

are considered, i.e., far-field and near-field ground motions, which are taken from the FEMA P695 (ATC-63). The near-field 

ground motions set includes two types of near-field ground motions, i.e., pulse and non-pulse. These ground motions are 

recorded within 50 km epicentral distance. A set of 14 ground motions (each having two horizontal components) is considered. 

The far-field ground motions are selected within a 100 km epicentral distance, and the soil type is classified as type C and type 

D, according to the NEHRP site classification. To do RBDO, the lower and upper bounds of the tuning parameters of SC-VD 

are assumed as: k1  ⁓ U [100, 500] kN/mm, k2 ⁓ U [2.5, 20] kN/mm, F0 ⁓ U [300, 600] kN, β ⁓ U [0.3,0.6] and Cd ⁓ 

U [5, 25] kN/(mm/s)0.4, respectively, are assumed to follow the uniform distribution. These bounds of the tuning parameters 

are kept constant.  

With this in view, the probability of failure of the structure is estimated using a PINN-based PDEM. The first step of the 

numerical procedure is to use the GF-discrepancy method to create 100 collocation points of random variables. For each ground 

motion, the system’s response is evaluated. The inter-storey drift ratio is chosen as the extreme event. Once the extreme event 
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is computed for all collocation points, the PDF of YEEV is estimated using PDEM, as defined in Eq. (10), Eq. (11) and Eq. (12). 

The partial differential equation in Eq. (10) subjected to initial condition depicted in Eq. (11) is solved using PINN. The 
architecture of the neural network is set to 8 hidden layers with 30 neurons in each hidden layer. The hyperbolic tangent 

function is used as an activation function. The Adam optimization algorithm is used to compute the weight and bias of the 

network, in which the learning rate is assumed to be 0.001. For every set of tuning parameters, the PDF of inter-storey drift 

ratio is estimated based on PINN-based PDEM framework. Figure 4(a) and Figure 5(a) show the PDF of maximum inter-storey 

drift ratio among all floors for far-field and near-field ground motion, respectively. For validation purpose, the Monte-Carlo 

simulation is adopted to find the PDF. It is seen from Figure 4(a) and Figure 5(a), the PDF estimated using proposed framework 

is well matched with Monte Carlo simulation. Using this PDF, the probability of failure is estimated by performing one-

dimensional integration over failure domain, as in Eq. (8) in which the maximum inter-storey drift ratio is taken as 2.5%. Once 

the probability of failure is estimated for all set of tuning parameters of SC-VD, the RBDO is performed on the surface which 

are shown in Figure 4(b) and Figure 5(b) for far-field and near-field ground motions, respectively. The optimal tuning 

parameters are estimated at the point on the response surface where the probability of failure is minimum. The optimal tuning 

parameters of SC-VD are tabulated in Table 2. 

  

                                                 (a)                                                                                                    (b) 

Figure 4. (a) PDF of maximum inter-storey drift ratio and (b) response surface of probability of failure for far-field ground 

motion 

 

                                                 (a)                                                                                                    (b) 

Figure 5. (a) PDF of maximum inter-storey drift ratio and (b) response surface of probability of failure for near-field ground 

motion 
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Table 2. Tuning parameters of SC-VD for far-field and near-field ground motions 

Parameters Storey 1-2 Storey 3-6 Storey 7-10 Storey 11-13 Storey 14-16 

 Far Near Far Near Far  Near Far Near Far Near 

k1 162.5 143.7 262.5 381.2 437.5 156.2 187.5 331.2 362.5 381.2 

k2 5.2 14.8 12.9 6.1 3.1 3.9 5.2 3.3 14.9 15.3 

F0 459.4 351.5 178.1 217.2 240.6 185.9 396.9 420.3 115.6 170.3 

β 0.55 0.53 0.59 0.38 0.48 0.52 0.33 0.38 0.36 0.36 

Cd 21.9 15.3 14.4 19.7 24.3 10.9 18.1 15.3 6.8 7.2 

 

With these optimal tuning parameters, the top floor displacement of the steel MR frame is evaluated which is shown in Figure 

6(a) and Figure 6(b) for far-field and near-field ground motions, respectively. Similarly, the corresponding maximum residual 

drift at all floors is depicted in Figure 7(a) and Figure 7(b) for far-field and near-field ground motions, respectively. 

 

                                                (a)                                                                                                    (b) 

Figure 6. Top floor displacement for (a) far-field and (b) near-field ground motions 

 

                                                (a)                                                                                                    (b) 

Figure 7. Maximum residual drift at floor level for (a) far-field and (b) near-field ground motions 
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CONCLUSIONS 

This study proposed fine-tuning the self-centering viscous damper for reliable performance in the presence of ground motions. 

A steel moment-resisting structure has dampers installed on each floor, acting as a brace. In order for the proposed damper to 

operate satisfactorily against any future earthquakes, this study aims to fine-tune its stiffness and damping properties under 

ground motion uncertainty. A physics-informed neural network-based probability density evolution method is used to design 

the phenomenological parameters of the self-centering viscous damper. Two different ensembles of ground motions (i.e., far-

field and near-field) are used to establish the performance of the proposed damper. The major observations from this study are 

reported below: 

• The accuracy of the proposed framework is validated with the Monte Carlo simulation. It is seen from the numerical 

investigation that the solution using the proposed framework is consistent with the Monte Carlo simulation. 

• It is seen from the numerical analysis that 100 collocation samples of the tuning parameters of SC-VD are required to 

get the satisfactory performance of PINN, which leads to a reduced computational cost compared to any numerical 

method such as the finite difference method. 
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