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ABSTRACT 

This paper presents a novel integrated unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) system for 

structural health monitoring (SHM). In the aftermath of a disaster, efficient and accurate data collection and processing is 

crucial for assessing the structural integrity of buildings. However, current limitations in SHM systems include a lack of 

autonomy, leading to manual remote operations that are labor-intensive and time-consuming. To address that, the proposed 

system utilizes a wireless robot operating system (ROS) network to coordinate navigation and data collection of the UAV and 

UGV. Additionally, improved simultaneous localization and mapping (SLAM) algorithm is employed to generate a 2D map of 

the environment. High-resolution data collected by the UAV is used for 3D reconstruction at the scene and component level, 

making it suitable for post-earthquake assessments. The effectiveness of the proposed system was validated through 

experiments using a custom-built ground robot and a micro aerial vehicle for indoor inspections. Results from both qualitative 

and quantitative analyses demonstrate the potential for this system to enhance the efficiency and effectiveness of post-

earthquake SHM and remote sensing through the use of cost-effective and portable robots. 

Keywords: Cyber-physical system, structural health monitoring, simultaneous localization and mapping (SLAM), Neural 

Radiance Field (NeRF), 3D reconstruction  

INTRODUCTION 

The advances in edge computing have catalyzed an advancement in the development and deployment of AI-based robotic 

applications, which substantially reduces the cost of data transmission and cloud computing [1]. The implementation of such 

an approach has proven to be highly effective in supporting applications that require real-time decision-making with low 

latency. One such application is autonomous structural health monitoring and damage detection using unmanned aerial vehicles 

(UAVs) and unmanned ground vehicles (UGVs) [2-5]. The use of traditional methods for path-planning and data collection 

may not always accurately capture the unstructured, dynamic, and complex nature of inspection sites after an event such as an 

earthquake, and human-based inspections may leave workers at risk of potential hazards [6]. In addition, manual approaches 

that largely rely on manual inspections, are time-consuming and subjective and thus not feasible for large sites [7]. 

The emerging technologies have paved the way for the development of new efficient cyber-physical systems that reduces the 

cost and time for a full inspection of buildings and infrastructures. Several researchers have investigated computer-aided and 

artificial intelligence (AI)-based approaches for intelligent monitoring, such as building information modeling (BIM)-based 

methods [1, 8-10]. Zhang et al. [11] developed a BIM-based proactive approach for hazard identification, visualization, and 

safety planning using construction schedules. However, without BIM support, such techniques cannot be scaled or generalized.   

The integration of edge computing and AI-based computer vision into cyber-physical systems (e.g., robots) provides a 

promising solution to address the demands for post-event inspections. Recently, several studies have been conducted to explore 

automated approaches in post-earthquake inspections and damage detection [12-14]. One of the most popular methods is 

computer vision-aided frameworks for the identification of damaged structural components using stationary cameras or UAVs 
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[15, 16]. Such methods usually use convolutional neural networks (CNNs) for the recognition and localization of visual 

damages [17-19].   

Due to the high payload capacity and mobility of Ground robots, such as UGVs, they offer more feasible and robust solutions 

for various applications, including structural health monitoring, surveillance, and construction site monitoring. Therefore, 

further research is required to develop robust and reliable UGVs that can efficiently navigate in a dynamic and complex 

environment and perform tasks autonomously. Traditionally, UGVs were designed to process sensor data using mounted high-

performance computers. An efficient solution for indoor monitoring using UGVs is utilizing the Robot Operating System (ROS) 

[20], a flexible and scalable framework that facilitates the development of robotics applications. ROS can be used to develop 

various functionalities of UGVs, including collision-free navigation and mapping, as well as vision-based object detection and 

tracking.   

Kim et al. [21] propose a SLAM-based UGV system for autonomous data collection using an object-detection algorithm. Such 

systems are not efficient for indoor sites due to their size as well as the cost of production, which hampered deployment for 

indoor inspections. Recently, Ojha et al.  [6, 22] investigated the feasibility and performance of a small and low-cost UGV 

equipped with a camera and a light detection and ranging (LiDAR) sensor for the detection and localization of fall hazards in 

indoor construction sites. They utilized a low-resolution RGB camera for detecting fall hazards, alongside mechanical and cost-

efficient LiDAR sensors for simultaneous localization and mapping (SLAM). However, despite their successful results, the 

system's performance is still limited due to hardware and computation constraints. Specifically, their use of a single RGB 

camera with limited resolution and field of view for detection has inherent limitations such as susceptibility to environmental 

factors like lighting and shadows, making accurate geo-tagging of objects of interest challenging.  

To address the limitations of the previous research, this study proposes a novel integrated cyber-physical system that consists 

of ground and aerial robots for efficient data collection and monitoring. For this purpose, a high-performance single-board 

computer is used to deploy the lightweight navigation and detection algorithms for the UGV. A wireless ROS network was 

established to connect UAV and UGV to a host portable computer where the AI models were deployed for faster processing of 

high-resolution images. To generate the map of the environment, an integrated method including Hector SLAM mapping, 

rapidly exploring random-tree (RRT) and Voronoi Diagram (VD)-based path-planning algorithms were developed. To assess 

the performance and validate the feasibility and efficacy of the proposed cyber-physical system, an experimental study was 

conducted at an indoor structural laboratory at the University of British Columbia. The recorded videos by the UAV were used 

to reconstruct the scene in 3D using a NeRF algorithm [23].  

METHODOLOGY 

Overview  

The proposed pipeline for autonomous 2D mapping and 3D scene reconstruction using integrated aerial-ground robotics is 

shown in Figure 1. Two fully programmable aerial and ground robots were used in this study. A wireless ROS network was 

established to efficiently communicate with each robot through standard IP-based data transmission protocols. First, the ground 

robot starts generating the 2D grid map of the surroundings. Based on the detected obstacles, the flight path for the UAV was 

generated and the recorded video frames were collected and processed for camera pose detection. This information was fed to 

the NeRF model to generate the 3D scene of the scanned environment. Details of the hardware and software of the proposed 

system are described in the following sections.  

 

Figure 1. The proposed pipeline for integrated aerial-ground robotics for mapping and data collection. 
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Hardware components 

The proposed cyber-physical system consists of an affordable micro-aerial vehicle (MAV) and a cost-effective custom-built 

robot that consists of two mechanical LiDAR sensors, an NVIDIA Jetson Nano (4GB), an Arduino Mega 2560, power supply 

units, and the omnidirectional UGV chassis with 12 V mecanum wheels.  

To measure the distance data points between the robot and the objects (i.e., laser scanning), a cost-efficient mechanical LiDAR 

sensor (RPLiDAR A1M8) was utilized. This sensor is capable of scanning and generating 2D point sets to measure the distance 

from objects within 12 meters and 360° [24]. The sensor provides accurate estimation by emitting infrared pulses and receiving 

the reflected light from objects in its vicinity, which is essential for collision-free navigation and mapping in diverse 

environments.  

The Jetson Nano (4GB) [25], a powerful and low-power consumption single-board computer with Ubuntu 18.04 LTS and ROS 

Melodic, is used to connect the UGV to the ROS network for efficient navigation and data collection. This compact edge 

computer features a quad-core ARM Cortex-A57 CPU, 4GB of RAM, and NVIDIA Maxwell GPU with 128 NVIDIA CUDA 

cores, which is ideal for running a wide range of light-weight computer vision, AI, and robotics applications including Robot 

Operating System (ROS) [20]  and OpenCV [26]. To establish a ROS network,  the Intel-AC8265 dual-mode wireless 

networking card module provides a much faster and more reliable Wi-Fi and Bluetooth connection compared to simpler single-

board computers such as Raspberry Pi 4 [27]. Four encoder gear motors are used to move the robot in the desired direction. 

The 4WD UGV uses mecanum wheels to provide more moving options for navigation and mapping without changing the 

viewport. Four of major directions are depicted in Figure 2. Finally, A portable laptop, with 16 GB RAM, Intel Core i7-12700H 

CPU, and NVIDIA RTX 3070 GPU, is used as the Operation Control Unit (OCU). 

 

Figure 2. The working principle and motion of the 4WD mecanum wheel UGV. 

Simultaneous localization and mapping (SLAM)  

In the case of a mobile robot, simultaneous localization and mapping (SLAM) involve an iterative process that fuses diverse 

measurements from onboard sensors to enable both localization and mapping. This process is continuous and operates in real-

time to update the robot's internal map while simultaneously determining its position within that map. Among the popular 

Simultaneous Localization and Mapping (SLAM) algorithms, Hector SLAM was used in this study because it does not require 

odometer information. The process of scan matching for the Hector SLAM algorithm involves optimizing the alignment of the 

2D laser scan endpoints at the current time with the global map. A GausspNewton optimization approach is used to predict the 

robot pose. Hector SLAM utilizes a rigid body transformation: 

 𝜉 =  (𝑝𝑥 , 𝑝𝑦, 𝜓)
𝑇
 (1) 

where  𝑝𝑥, 𝑝𝑦,  𝜓 are the coordinates and the yaw angle of the robot in the robot coordinate system, and it is minimized in order 

to achieve the best alignment between the laser scan and the map.  

 ξ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ξ ∑ [1 − 𝑴(𝑺𝒊(ξ )]2n
i=1   (2) 

where 𝑆𝑖 represents the world coordinates of the scan endpoints as described by Wang [28] as follows: 

 𝑺𝑖(ξ ) = {
𝑺𝑖,𝑥(ξ )

𝑺𝑖,𝑦(ξ )
} = [

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] {
si ,x

si ,y
} + {

px

py
} (3) 

where 𝑺𝑖,𝑥(ξ ) and 𝑺𝑖,𝑦(ξ ) are the ground coordinates of the 𝑖𝑡ℎ endpoint scanned by the LiDAR sensor. Assuming small 

movement of the robot, 𝛻ξ, we have: 

  ∇ξ =  H−1 ∑ [∇M(𝑆𝑖(ξ))
𝜕𝑆𝑖(ξ)

𝜕ξ
]

𝑇
[1 − 𝑀𝑆𝑖(ξ )]𝑛

𝑖=1  (4) 

where, and H is the Hessian matrix,  
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  𝐻 = [∇M(Si(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
]

𝑇

[∇M(Si(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
] (5) 

and ∇M(𝑆𝑖(ξ)) is the gradient of the current map.  

Path planning for UAV  

The Voronoi diagram is a mathematical construct that partitions a map into different regions based on the proximity of the 

points. In the context of path planning for an autonomous UAV-based data collection, Voronoi diagrams can be used to 

construct a roadmap of the environment, with each Voronoi region representing the set of points that are closest to a specific 

obstacle or feature in the environment. In this study, the Voronoi diagram is utilized to generate a roadmap of the environment 

based on the SLAM-generated occupancy grid map. The roadmap is then used to plan the UAV's flight path through the 

environment, to minimize the distance traveled while avoiding collisions with obstacles. 

 

Figure 3. Voronoi diagram generation for collision-free path planning for UAV. 

3D Reconstruction  

In recent years, several innovative approaches have been proposed to execute 3D reconstruction utilizing Structural-from-

Motion (SfM) techniques. The process of 3D reconstruction through SfM comprises several stages, including feature extraction, 

feature matching, geometric verification, and reconstruction [29]. These stages play a crucial role in producing an accurate and 

complete 3D representation of the target object or scene, making them essential components of the 3D reconstruction. Neural 

field (NF) is a term that was recently used to represent a neural network for parametrizing a signal [30]. The fully connected 

(FC) neural networks are utilized in most variations of NFs to encode the properties of scenes or objects, with the exception 

that in contrast to the standard ML models, NFs are intentionally overfitted to encode the scene's features as weights. In 

traditional approaches, voxel grids and polygon mesh were used in order to store 3D objects and scenes, which were not 

efficient. Due to the fact that NFs are differentiable and continuous, they have gained significant attention. Because they provide 

an efficient way to represent a 3D object. The most prominent models from the NF family are Neural Radiance Fields (NeRFs). 

NeRF was introduced by Mildenhall et al. [23] for synthesizing photo-realistic 3D reconstruction of complex scenes using sets 

of 2D images from different angles. NeRFs are state-of-the-art NFs that learn to represent a 3D scene as a continuous function, 

and thus they are different from the traditional methods that require manual texture mapping and lighting. In contrast to the 

traditional 3D reconstruction methods, NeRFs do not rely on geometric primitives, such as triangles and voxels; instead, they 

train a neural network to directly model the scene’s appearance. Another advantage of NFs lies in their ability to generate 

distinct representations of a point when observed from different angles, enabling the capture of various lighting effects such as 

reflections and transparencies. As a result, neural fields are suitable for rendering different views of the same scene, making 

them a superior representation when compared to voxel grids or meshes. As a result, NeRFs have emerged as a promising 

method for generating highly accurate and realistic 3D digital scenes and have been successfully applied to a wide range of 

applications [31, 32]. As shown in Figure 4, a NeRF model takes a single continuous 5D coordinate (i.e., location and viewing 

angle) and outputs the corresponding color intensities and the volume density.  

Obstacle 

Obstacle 
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Figure 4. The Neural Radiance Fields [23]. 

EXPERIMENTAL RESULTS AND DISCUSSION 

In this study, as the first step, the occupancy grid map of the environment was generated using the LiDAR sensor mounted on 

a custom-built 4WD ground robot and utilizing an autonomous exploration as well as the Hector SLAM algorithm. To 

efficiently distribute the computational resources, the navigation algorithm and laser scanning (RPLiDAR) ROS nodes were 

deployed on the robot, while the SLAM algorithm and visualization tools were developed and launched from the ground station 

computer (i.e., the ROS core). The ROS topic tree as well as the generated grid map of the environment is shown in Figure 6. 

This map provides an accurate representation of the surrounding obstacles and enables the UAV to navigate autonomously. To 

measure the accuracy of the map the Hausdorff distance (HD) metric was used [33-35]. The Voronoi diagram, Figure 6(a), is 

used to generate a collision-free path for the UAV (Figure 6(b)).  

 

 Figure 5. The ROS topic tree for Hector SLAM. 

 
(a)                                                                          (b) 

Figure 6. UAV path planning: (a) the Voronoi diagram, (b) safe flight path based on the Voronoi diagram. 
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Once the recorded frames by the UAV were received by the host computer, the NeRF algorithm was used to generate the 3D 

representation of the scanned area. Due to the limitations of the graphical processing unit, only around 100 video frames were 

extracted for reconstruction purposes. The camera information was generated using COLMAP [29]. Using the Segment 

Anything (SAM) segmentation model [36], an original input video frame from the UAV was segmented and compared with 

the segmentation results for the synthetic new viewpoint generated using the 3D reconstruction with NeRF. As shown in Figure 

8, the segmentation result demonstrates that the reconstructed scene is highly accurate and the fine details could be used for 

accurate damage assessment in structural health monitoring applications.  

 
       (a)                                                                                                 (b) 

Figure 7. 3D scene reconstruction of the structural laboratory at UBC (a), with the zoomed view (b). 

  

(a)                                                                              (b) 

Figure 8. Segmentation results for (a) the UAV-recorded video and (b) the synthetic novel view from NeRF. 

CONCLUSIONS 

This study presents a framework for the integrated robotic system. An affordable custom-built ground robot and a 

programmable aerial quadcopter were used to achieve the optimal solution for 2D mapping and 3D scene reconstruction. For 

the 2D mapping, the ground robot was used and the Hector SLAM algorithm was utilized to generate the grid map of obstacles. 

The optimal flight path was generated using the Voronoi diagram for the UAV. The 3D scene of the inspected area was 

generated using a state-of-the-art NeRF model. The obtained results for 2D mapping and 3D reconstruction demonstrate the 

effectiveness of the proposed system for real-world indoor inspections and structural health monitoring.  
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