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ABSTRACT 

After an earthquake, it is particularly important to provide the necessary resources on site because a large number of 
infrastructures need to be repaired or newly constructed. Due to the complex construction environment after the disaster, there 
are potential safety hazards for human labors working in this environment. With the advancement of robotic technology and 
artificial intelligent (AI) algorithms, smart robotic technology is the potential solution to provide construction resources after 
an earthquake. In this paper, the robotic crane with advanced AI algorithms is proposed to provide resources for infrastructure 
reconstruction after an earthquake. The proximal policy optimization (PPO), a reinforcement learning (RL) algorithm, is 
implemented for 3D lift path planning when transporting the construction materials. The state and reward function are designed 
in detail for RL model training. Two models are trained through a loading task in different environments by using PPO 
algorithm, one considering the influence of obstacles and the other not considering obstacles. Then, the two trained models are 
compared and evaluated through an unloading task and a loading task in simulation environments. For each task, two different 
cases are considered. One is that there is no obstacle between the initial position where the construction material is lifted and 
the target position, and the other is that there are obstacles between the initial position and the target position. The results show 
that the model that considering the obstacles during training can generate proper actions for the robotic crane to execute so that 
the crane can automatically transport the construction materials to the desired location with swing suppression, short time 
consumption and collision avoidance. 

Keywords: Robotic crane, earthquake engineering, reinforcement learning, 3D path planning, motion planning. 

 

1. INTRODUCTION 

Earthquake damage to infrastructure can result in casualties, economic losses and functional losses. After an earthquake, a large 
number of infrastructures need to be repaired or newly constructed. In traditional methods, human labors will operate heavy 
equipment, such as tower cranes or mobile cranes, on the construction site to provide the necessary construction materials. 
However, due to the complex construction environment after the disaster, there are potential safety hazards for human labor 
working in this environment. In this case, robotic technologies with artificial intelligent (AI) algorithms could be the potential 
solution to provide construction resources after an earthquake. In post disaster reconstruction, mobile cranes are indispensable 
for transporting, handling and cleaning materials. They can be not only used for erecting structural members but are also used 
for lifting and transporting precast structural components, non-structural components and other materials in construction sites. 
Since a great number of construction activities rely on the efficiencies of resource transportation by cranes, the proper planning 
and operations of cranes are essential to achieve high productivity during construction. The lift path planning of cranes is one 
of the important tasks when operating a crane. Currently, mobile cranes are normally controlled by crane operators through a 
control system attached to the crane itself or a wireless remote controller. Therefore, the lift path is entirely judged and planned 
by crane operators. However, finding an optimal lift path with short time consumption is difficult for crane operators, and 
controlling the swing of the hoist rope on the crane is also a tricky problem to tackle when transporting construction materials. 
With the advancement of robotic technologies and machine learning (ML), new opportunities have been brought to the 
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construction industry. The robotic crane with AI algorithms can be implemented to replace human beings for lifting, 
transporting and construction tasks after an earthquake. 

With the advancement of robotic and control technologies in civil, structural and construction engineering [1-4, 17]; Xiao et 
al., 2023), research on the application of robots in construction has been investigated recently. Unmanned aerial vehicle (UAV) 
and unmanned ground vehicle (UGV) have been implemented for simple construction tasks. However, UAV can only perform 
the tasks that require lifting low-weight structural components due to its limited payload and flight time [5-7], and UGVs were 
mainly implemented to conduct construction of planar structures [8-9]. Robot arm, which is more powerful than UAV and 
UGV in construction, has also attracted researchers’ interests these years. Koerner et al. [10] proposed an efficient workflow 
considering design, fabrication, and assembly for Digital and robotic automation. The KUKA robotic arm was used to assemble 
a discrete timber structure to achieve digital fabrication and robotic assembly. Liang et al. [11] implemented learning from 
demonstration (LfD) to teach robotic arm how to install ceiling tile using a set of human demonstration videos. The robotic 
arm has been proved to have high degrees of freedom and can be used to complete the assembly of small-scale structures. 
However, they cannot be implemented for large-scale and heavy-weight structure construction [12]. Compared to robotic arm, 
robotic crane is more suitable for lifting, transporting and installing large-scale and heavy-weight structural components. 
Research on robotic cranes has also been attempted for autonomous construction. For example, Zi et al. [13] proposed a solution 
to address the cooperative problems, including localization, obstacle avoidance and automatic leveling control, for four mobile 
cranes. Dutta et al. [14] employed intelligent decision-making and planning algorithms to establish a lift planning system for 
tower cranes with the support by building information modeling (BIM). Kayhani et al. [15] developed a heavy-lift path planning 
method to find the shortest path for the crane planar motion. 

Machine learning (ML) has been applied in various applications in civil, structural and construction engineering due to the 
advancement of AI technology. In the field of civil and structural engineering, Deep Learning (DL, a type of ML algorithms) 
has achieved a great success in a wide range of computer vision tasks [16-17], such as image classification [18-19], object 
detection [20-21], segmentation [22], motion tracking [23-24], and 3D vision-based applications [25-26]. In construction 
engineering, DL has been applied to recognize actions of onsite workers or equipment on the construction site [27-29]. 

On the other hand, reinforcement learning (RL), one of the other powerful ML algorithms, has been widely investigated in 
construction recently. Sartoretti et al. [30] employed distributed asynchronous advantage actor-critic (A3C) algorithm to learn 
a policy that allowed multiple agents to work together to achieve a same goal. The simulated results showed that multiple 
agents were trained to be able to work in a shared environment to complete a collective construction task. Lee and Kim [31] 
investigated the feasibility of deep Q-network (DQN) for autonomous hoist control. The results proved that the implementation 
of DQN can increase the lifting efficiency and reduce unnecessary trips when multiple hoists are operating simultaneously. 
Jeong and Jo [32] used a convolutional neural network based deep deterministic policy gradient (DDPG) approach to train the 
RL agent to be able to design a reinforced concrete beam in a cost-effective way. These studies have proved that the 
implementation of RL can effectively improve the efficiency in designing structures, transporting materials and conducting 
construction tasks on the construction site. However, more research could be investigated for the implementation of RL in 
mobile crane motion planning. 

In this paper, a robotic crane is used to provide resources for infrastructure reconstruction after an earthquake. The proximal 
policy optimization (PPO) [33], a RL algorithm, is implemented to train a model that can conduct 3D lift path planning for a 
robotic crane. The state and reward function are designed in detail for RL model training. Two models are trained through a 
loading task in different environments: 1) model #1 considers the influence of obstacles between the initial position where the 
construction material is lifted and the target position; 2) model #2 only considers the robotic crane itself and ground as obstacles 
(no obstacles between the initial position and the target position). After training, the performance of the two trained models is 
compared through a loading task and an unloading task in a simulation environment. The loading task is to transport the 
construction materials from the ground to the designated location on crane, and the unloading task is to unload the construction 
materials from the crane and transport it to the designated location on the ground. For each task, two cases, whether there are 
obstacles between the construction material initial position and the target position, are investigated and compared. The 
simulated results proved that the model #1 is successfully trained through PPO algorithms that allows robotic crane to 
automatically transport the construction materials to the desired location with swing suppression, short time consumption and 
collision avoidance. 

 

2. METHODOLOGY 

2.1 PPO and neural network parameter update 

In this section, an on-policy reinforcement algorithm, PPO, is employed to train the agent to learn a policy that allows a robotic 
crane to automatically plan a lift path and transport construction materials with swing suppression, short time consumption and 
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collision avoidance. Since the lift path planning of the robotic crane is a continuous action space planning problem, the PPO- 
continuous algorithm is adopted, where the Gaussian distribution is used for the output of crane action. There are two neural 
networks in the PPO algorithm, which are actor network and critic network. The actor network is used to generate actions based 
on the states obtained from environment while the critic network is used to evaluate the values of the states. The parameters of 
the actor network are updated based on the Equation (1): 

𝜃𝜃𝑘𝑘+1 = arg𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸 �
𝜋𝜋𝜃𝜃(𝑚𝑚|𝑠𝑠)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚|𝑠𝑠)𝐴𝐴

𝜋𝜋𝜃𝜃𝑘𝑘+1(𝑠𝑠,𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜋𝜋𝜃𝜃(𝑚𝑚|𝑠𝑠)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚|𝑠𝑠) , 1 − 𝜀𝜀, 1 + 𝜀𝜀�𝐴𝐴𝜋𝜋𝜃𝜃𝑘𝑘+1(𝑠𝑠,𝑚𝑚)� (1) 

where 𝜋𝜋 is the policy network (actor network) and 𝜃𝜃 is the parameters of actor network. a is the action taken by the agent and 
s is the state obtained from the environment. 𝐴𝐴(𝑠𝑠,𝑚𝑚) is the advantage function. ε is a small hyperparameter. The parameters (𝜑𝜑) 
of the critic network are updated based on the Equation (2): 

𝜑𝜑𝑘𝑘+1 = 𝑚𝑚𝑎𝑎𝑎𝑎 𝑚𝑚𝑐𝑐𝑚𝑚
1

|𝐷𝐷𝑘𝑘|𝑇𝑇
� ��𝑉𝑉𝜑𝜑(𝑠𝑠) − 𝑎𝑎�2

𝑇𝑇

𝑡𝑡=0𝜏𝜏∈𝐷𝐷𝑘𝑘

(2) 

where 𝐷𝐷𝑘𝑘 is a set of trajectories. 𝑇𝑇 is the total steps. 𝑉𝑉𝜑𝜑(𝑠𝑠) is the value function and 𝑎𝑎 is the reward function. 

 

2.2 Design of state 

The states observed from the environment are the inputs of the actor network and critic network. The quality of the states will 
affect the result of the agent training and the convergence of PPO algorithm. In order to train the agent to complete the loading 
and unloading tasks, the states should be designed based on the requirements of the task. Table 1 summarizes the states used 
in this study when training the agent through PPO algorithm. 

 

Table 1 Summary of states for PPO training 

State Description Value 

Position of the material The real-time position of the material lifted 
at each time step.  

3D coordinates of the material 
lifted 

Target position 
The position of the target destination. The 
position is only updated at the initial stage 
of each episode. 

3D coordinates of the target 
position 

Distance 

The distance between the material lifted and 
the target position. The distance is updated 
after the robotic crane executes a new 
action output by actor network 

Distance in 3D space 

Collision warning A lidar sensor with 5m distance range is 
installed on the hook to detect the obstacle 0, 1 

Rope angle 
The angle of hoist rope swing (should be 
smaller than the maximum allowable swing 
angle 𝜃𝜃𝑡𝑡ℎ𝑟𝑟) 

0° - 𝜃𝜃𝑡𝑡ℎ𝑟𝑟 

Steps 
Current step consumption in each episode 
(should be smaller than the maximum 
allowable steps 𝑁𝑁𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 of each episode) 

0 - 𝑁𝑁𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 
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2.3 Design of reward function 

The target of learning a policy using RL algorithm is normally to train a RL model that can maximize the future total reward. 
The design of the reward function can determine whether the policy can output a proper action according to the input states. A 
properly designed reward function can guide the agent to learn a policy that promotes the agent to complete the task successfully, 
while an incorrect reward function will result in the failure of the task. In this paper, several continuous rewards and discrete 
rewards are designed to guide the training of RL model. The designed reward functions are listed in Table 2. 

 

Table 2 Design of reward function 

Reward No. Reward Type Description Value 

1 continuous rewards positive reward for getting closer to the 
target position 

𝑐𝑐1 × 2−|𝐿𝐿| , (𝑐𝑐1 > 0) 

2 continuous rewards 
negative reward for swing of the hoist rope 

𝑐𝑐2 ×
𝜃𝜃𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠
𝜃𝜃𝑡𝑡ℎ𝑟𝑟

 , (𝑐𝑐2 < 0) 

3 continuous rewards negative reward for additional time 
consumption 

𝑐𝑐3, (𝑐𝑐3 < 0) 

4 discrete rewards negative reward for collision 𝑐𝑐4, (𝑐𝑐4 < 0) 

5 discrete rewards positive reward for reaching target position 𝑐𝑐5, (𝑐𝑐5 > 0) 

Note: 𝑐𝑐1 to 𝑐𝑐5 are the parameters defining the magnitute of each reward. 𝐿𝐿 is the distance between the material position and 
target position. 𝜃𝜃𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 is the swing angle and 𝜃𝜃𝑡𝑡ℎ𝑟𝑟 is the maximum allowable swing angle 

 

2.4 Modelling strategies 

The PyBullet [34] is used as the simulation software for modelling and RL model training. All models in the simulation 
environment are created using universal robot description file (URDF) format codes. Figure 1 shows the URDF model of 
robotic crane. To make the trained model more practical, several modelling strategies are used in this study: 1) all models 
including robotic crane, construction material and obstacles are built as 1:1 scale models; 2) the robotic crane is modelled 
according to the real specifications of the crane COPMA 510_ENG; 3) the hoist rope is created by a number of rigid links and 
continuous type joints. In addition, several reasonable assumptions are also made during modelling: 1) the actions output by 
the action network are increments of 3D coordinates of the end of telescopic boom; 2) the joint between the turntable and 
telescopic boom, whose rotation is normally driven by an actuator, is modelled as a revolute joint; 3) all the joint movements 
of the robotic crane are continuous and simultaneous; 4) a virtual lidar sensor is installed on the hook to detect the obstacle 
within 5m. 
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Figure 1 URDF model of robotic crane 

3. MODEL TRAINING AND VALIDATION 

In this section, the training of RL model for lift path planning is conducted through a loading task. Two RL models are trained 
in situations with and without obstacles respectively. Then, the two trained models are compared and evaluated through an 
unloading task and a loading task to check whether the proposed strategy can provide construction materials for a damaged 
structure after an earthquake. For each task, two different cases are considered. One is that there is no obstacle between the 
initial position where the material (a timber column) is lifted and the target position, and the other is that there are obstacles 
between the initial position and the target position. 

 

3.1 Model training in a loading task 

During training, a 5m-long cylinder timber column needs to be lifted and transported from the initial position at the ground to 
the target position on robotic mobile crane. Figure 2(a) and Figure 2(b) show the loading environment with and without the 
obstacles, respectively. In order to make sure that the timber column can be transported to any designated location rather than 
a fixed location, the target position is randomly assigned within the white rectangle at the beginning of each episode of training. 
The red rectangle represents the target position where the center of the cylinder timber column needs to reach. The initial 
position on the ground of the timber column is fixed during training. The 3D lidar scanner is usually used to scan the working 
environment of the construction site. Therefore, in the situation where the obstacle is considered when training the RL model, 
two lidar scanners supported by a desk are considered as the obstacle between the initial position and the target position. 

 
(a) with obstacles 

 
(b) without obstacles 

Figure 2 Loading environment for PPO training 
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For both cases with and without obstacles, a total of 1 million steps are set for policy training and the learning rate is set to 
3×10^5. Figure 3 plots the cumulative reward curve for loading task throughout training. The results show that the cumulative 
rewards for two cases converge to the maximum level as the number of steps increases, which indicates the success of training 
for both two cases. It can also be observed that the training result converges faster in Case 2. This is because the training 
environment is more complicated in case 1 due to the obstacles between the initial position and target position. It is also 
noticeable that the cumulative rewards in case 1 have a slight decrease and then quickly re-converge to the maximum value 
after first convergence to the maximum reward level. This phenomenon can sometimes be solved by reducing the learning rate 
during training. 

Figure 4 and Figure 5 show the loading procedures after training. The black line drawn in Figure 4(a) and Figure 5(a) represents 
the lift path of the object being transported to the target position. By comparing the lift path drawn in Figure 4(a) and Figure 
5(a), it is evident that the crane automatically plans a lift path that first transports the timber column to a point above the two 
lidar scanners and then transports to the target positions when obstacles are considered. On the other hand, the timber column 
is directly transported to the target position when there is no obstacle. 

 
Figure 3 Learning curve of loading task 
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(c) 

 
(d) 

Figure 4 Loading procedures without obstacles 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 Loading procedures with obstacles 
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3.2 Model evaluation 

In this section, the two well-trained RL models are compared and evaluated through an unloading task and a loading task. The 
model trained considering lidar sensor as the obstacle is model #1 and the model trained without considering the obstacle is 
model #2. For both unloading task and loading task, the obstacle and obstacle-free situation are all considered. For the situation 
where the obstacle is considered, a wooden fence is added between the 5m-long cylinder timber column and the target position. 
In addition, a damaged wooden structure which requires reconstruction after an earthquake and a pre-scanned ground are 
imported into the PyBullet as the dynamic environment. During evaluation, a total number of 100 different scenarios with 
randomly selected target position are set for each task. The evaluation results of model #1 and model #2 are summarized in 
Table 3. Figure 6 and Figure 7 show the successfully examples of executing lift path planning task using model #1 and model 
#2, respectively. As can be seen from Table 3, model # 2 has similar performance compared to model #1 when the wooden 
fence is not added as an obstacle between the 5m-long cylinder timber column and the target position. However, model #1 has 
much better performance than model # 2 when the wood fence is considered as an obstacle. This is because model #1 has a 
more complex training environment where more obstacles are taken into consideration during the training process. Therefore, 
a RL model with superior performance needs to be obtained, more factors need to be considered during the training process. 
However, extremely complex environments can also increase the difficulty of training, and sometimes may even result in a 
failure of training. Hence, the training environment needs to be reasonably and carefully defined according to the task demands. 

 

 
(a) loading task without obstacle 

 
(b) loading task with obstacle 

 
(c) unloading task without obstacle 

 
(d) unloading task with obstacle 

Figure 6 Successful examples of executing lift path planning task using model #1 

 



Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023 

9 

 

 
(a) loading task without obstacle 

 
(b) loading task with obstacle 

 
(c) unloading task without obstacle 

 
(d) unloading task with obstacle 

Figure 7 Successfully examples of executing lift path planning task using model #2 

 

Table 3 Evaluation results of model #1 and model #2 

Model # Loading task without 
obstacle (%) 

Loading task with 
obstacle (%) 

Unloading task without 
obstacle (%) 

Unloading task with 
obstacle (%) 

1 100 99 100 98 

2 100 54 98 47 

 

4. CONCLUSION 

In this paper, the robotic crane with PPO is proposed to replace human labors to provide construction resources after an 
earthquake. A reinforcement learning based lift path planning is developed for construction material transportation. Two models 
are trained through PPO algorithms to automatically transport the construction materials to the target position with swing 
suppression, short time consumption and collision avoidance. The feasibility of PPO in lift path planning is validated through 
a loading task and an unloading task in a simulation environment. In each task, two cases, whether there are obstacles between 
the construction materials and the target position, are investigated and compared. The results show that model #1 can conduct 
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proper lift path planning regardless of the existence of obstacles. Although RL has shown its potentials for lift path planning 
through this study, several limitations can be observed, and future studies will be conducted accordingly: 

• The simulation environment in this paper is simple, more complicated environment should be investigated in the future. 

• The PPO algorithm for lift path planning of robotic crane is only validated in a simulation environment, its feasibility still 
needs to be investigated in the laboratory and finally in a real construction site. 

• The performance of other reinforcement learning algorithms, such as DQN, DDPG and soft actor-critic (SAC), should be 
investigated and compared with PPO algorithm. 

• The implementation of reinforcement learning on construction tasks, such as installation of structural components and 
excavation, should also be investigated. 
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