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ABSTRACT 

With the increasing knowledge in seismicity, a growing number of dams fail to meet revised safety criteria that incorporate this 

new seismic hazard information. Therefore, the validity of the original design requirements needs to be revised. Probabilistic 

methods allow a wide variety of configurations to be considered, constituting the basis of more adequate design and assessment 

procedures. Multivariate fragility functions have become popular in assessing dams under seismic loads, as they offer efficient 

posterior uncertainty propagation and the ability to explore sensitivities and design parameter variation. This study aims to 

develop a procedure to generate parameterized seismic fragility functions that reduces uncertainty in the analysis when new 

information on parameters becomes available. A sequential approach is employed to highlight the impact of additional 

information related to each parameter and prioritize its comprehensive study. A verbal mapping scheme based on expert 

judgment is established to assign exceedance probabilities to seismic events with different return periods to determine whether 

or not target performance limit states are attained. Although the availability of additional information may not have a substantial 

impact on reducing the uncertainty in the fragility estimates, the proposed methodology allows for the identification of such 

cases and considers the anticipated value of further efforts to reduce uncertainty as a factor in selecting a course of action. The 

proposed methodology is applied to a case-study gravity dam located in eastern Canada, and the results show that efforts should 

be reoriented to perform a thorough seismic hazard analysis at the dam site and more exhaustive drainage efficiency controls.  

Keywords: Seismic fragility analysis, uncertainty reduction, seismic scenario, gravity dams, safety factor, probabilistic analysis. 

INTRODUCTION 

As the understanding of seismic activity grows, more and more dams are falling short of newly established safety standards 

that take this updated seismic hazard knowledge into account. Consequently, there is a need to re-evaluate the original design 

criteria to ensure their safe and continued operation [1]. Requirements for the stability of concrete dams in the current 

regulations are based on simplifications, which, in many cases, are very conservative. Concrete dams in Canada, as in most of 

the world, are designed and assessed based on a deterministic framework using safety factors (SFs). Among the main drawbacks 

of this method are the equal treatment of loads and the identical consideration of strength and capacity uncertainties [2]. 

Furthermore, present-day safety assessments and/or rehabilitation projects involve higher safety requirements than do the 

traditional standards. Design criteria have evolved according to technological advances in engineering, and with the growing 

societal awareness of risk, these criteria are more demanding than ever before. As a consequence, unnecessary rehabilitation 

works may be carried out on dams that are safe but do not meet the safety requirements. Thus, there is interest in moving 

towards more refined methods, such as probabilistic methods, that allow a wide variety of configurations to be considered, and 

constitute the basis of more adequate design and assessment procedures [3].  

In contrast to the deterministic approach, the probabilistic approach requires the treatment of each parameter as a random 

variable (RV) with an associated probability density function (PDF). This PDF allows variables to be treated as uncertain inputs 

by directly incorporating a possible range of values into the model instead of a single value [4]. To implement this type of 

analysis, the emphasis must be placed on the quality of the input parameters [2] especially of the seismic demand of the 

structural systems [5]. Probabilistic assessment, no matter how sophisticated, can still lead to very different solutions for a 

given problem because of the complex choices of RVs, characteristic values, PDFs, and bounds, which can largely influence 
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final results [6]. Fragility functions have become increasingly popular for the probabilistic assessment of dams, particularly 

under seismic loads [7]. However, these functions are frequently generated using a single parameter related to the expected 

damage, rendering the analysis highly dependent on the conditioning intensity measure (IM). As a result, multivariate models 

are increasingly being utilized to predict the response of a certain structure [8–9] despite requiring a large number of 

simulations. Hence, the analysis is generally not updated in light of new information due to the time-consuming re-evaluation 

and the lack of flexibility in the methods regarding including modified PDFs and bounds. Thus, there is a need to develop 

simplified and more expeditious methods for analyzing the safety of dams within a probabilistic framework. With this in mind, 

using a parameterized formulation, where the fragility of the system can be described by a fairly simple equation is preferred. 

Noted advantages of these parameterized multivariate fragility functions include the potential for efficient posterior uncertainty 

propagation and exploring sensitivities or the influence of design parameter variation. 

Accordingly, the main objective of this study is to develop a procedure to generate parameterized seismic fragility functions 

while jointly reducing the uncertainty in the analysis when new information on the parameters becomes available. To explicitly 

account for the effect of improved parameter knowledge, multidimensional integration is implemented to update the fragility 

functions so that recommendations can be formulated to achieve the expected seismic performance. This requires varying the 

probability density function of the input parameters and then examining the resulting effects on the fragility estimates. In order 

to accomplish this, a sequential approach is employed to highlight the impact of additional information related to each parameter 

and prioritize its comprehensive study. In addition, a verbal mapping scheme based on expert judgment is established to assign 

exceedance probabilities to seismic events with different return periods to determine whether or not target performance limit 

states are attained.  

CASE STUDY 

Numerical Model  

The present study is focused on a case study of a concrete gravity dam in Quebec, Canada with a maximum crest height of 

78 m (Figure 1a). The tallest monolith of the dam, with lift joints each 6 m, was modeled with the computer software 

CADAM3D [10] (Figure 1b), which performs stability analysis on gravity dams using the limit equilibrium method. Only one 

loading case was analyzed; this case includes the self-weight of the block, seismic loads, the hydrostatic and hydrodynamic 

load exerted by the reservoir on the block and the uplift pressures at the concrete-rock foundation. The uplift pressure 

distribution was defined according to the United States Army Corps of Engineers (USACE) [11]. A nonlinear analysis that 

allows to consider the crack propagation along the lift joints is used to analyze the system response, where if the base crack 

extends beyond the drain, the full uplift pressure is considered in the crack. The seismic loads were evaluated using the pseudo-

static method (seismic coefficient) [12]. Given that this method does not recognize the oscillatory nature of seismic loads, it is 

generally accepted that stability calculations can, therefore, be performed using a sustained acceleration ranging from 0.67 to 

0.5 times the peak acceleration [13]. In the context of this study, a reduction factor of 0.5 was applied to the horizontal peak 

ground acceleration (PGA) to account for the effect of sustained accelerations. Finally, the hydrodynamic pressure acting on 

the dam was modeled as added masses using Westergaard's formulation [11]. 

 

                                                                      (a)                                                      (b) 

Figure 1. Case study dam: (a) cross-section, (b) CADAM3D numerical model. 
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Seismic hazard and earthquake scenarios 

The choice of return period (RP) for seismic analysis of a dam depends on several factors, including the importance of the dam, 

the consequences of failure, and the potential for seismic hazard in the region. Generally, dams with higher consequences of 

failure or located in regions with high seismic hazard would require a higher return period for the seismic analysis. In general, 

the seismic analysis of a dam should consider a seismic event with a return period of at least 2475 years [14]. However, if the 

dam is located in a region with a high seismic hazard or has a high consequence of failure, it may be appropriate to use a return 

period of 10,000 years [14]. Moreover, it should be mentioned that Canada’s national mapping efforts have moved from 

qualitative assessment towards probabilistic assessment, reflected in the different editions of the National Building Code of 

Canada (NBCC) [15]. Table 1 presents PGA values for different RP at the dam site according to the last four editions of the 

NBCC [16–19] as well as the value considered in the dam owner’s internal seismic guidelines for a deterministic analysis.  

Table 1. PGA values in (g) for the different editions of the NBCC. 

Return  

Period (yrs) 

Deterministic 

analysis 

NBCC 

2005 2010 2015 2020 

100 - 0.027 0.014 0.015 0.019 

475 - 0.058 0.031 0.036 0.054 

975 - 0.083 0.050 0.053 0.081 

2475 0.23 0.125 0.080 0.080 0.131 

From Table 1, it can be observed that the values prescribed in the 2010 and 2015 editions are comparable, as are the values in 

the 2005 and 2020 editions. Returns periods greater than 2475 years are beyond the scope of the NBCC. However, it’s possible 

to extrapolate the values provided for the required return period. The 2020 edition of the NBCC [19] was used to determine the 

PGA value at the dam site for RP=10000 years, as shown in Figure 2, which corresponds to 0.32 g. Accordingly, the seismic 

scenarios considered in the analysis of the case study dam included events with return periods between 500 and 10,000 years, 

which corresponded to PGA values within the 0.05-0.35 g range. 

 

Figure 2. NBCC 2020 hazard curve at the dam site for PGA 

Modeling Parameters  

Each parameter was defined either as a fixed value or as an RV, for which the uncertainty or likelihood of occurrence was 

formally included through their PDF. Table 2 presents all the RV parameters considering the input parameters in the 

CADAM3D numerical model. Their respective distributions were defined using empirical data from similar dams and values 

found in the literature [20]. All the RVs were assumed to be uniformly distributed mainly because the available information 

was limited to the maximum and minimum values and because it defines equal probability over a given range [21]. All the 

remaining input parameters were held constant and represented by their best estimate values. In addition, Table 2 contains the 

values used in a deterministic stability assessment of the dam adopted for this case study.  

Table 2. Modeling parameter as RV 

Variable 
Uniform distribution parameters Deterministic 

analysis Lower Upper 

Cohesion, c (kPa) 0 3000 500 

Angle of friction,  () 42 55 45 

Drain efficiency,  (%) 0 67 50 

Reservoir elevation, H (m) 225 231 228 

PGA (g) 0.05 0.35 0.23 



Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023 

4 

 

PARAMETERIZED SEISMIC FRAGILITY FUNCTIONS 

The first step in a seismic fragility analysis is the identification of the damage states that are relevant to the system performance. 

When subjected to strong ground motion, gravity dams may be damaged in different ways. In recent years, typical damage 

modes that could lead to the potential collapse of dams after a seismic event have been identified, and seismic damage levels 

have been established. The overall stability of concrete retaining structures is verified by imposing performance criteria on 

predefined indicators to ensure that a sufficient margin of safety against failure exists for each of the failure mechanisms 

considered for the body of the system. Preliminary analyses have identified sliding as the critical failure mode for the case 

study dam; other failure modes would only occur after sliding has already been observed. As a result, the performance indicator 

considered in this study is sliding safety factor (SF). 

Design of experiments 

To optimize the cost of running computer model simulations while analyzing an adequate number of loading conditions and 

structural system configurations, an appropriate experimental design method should be used. The uncertainties due to the 

variables in Table 2 were propagated in the analysis using Progressive Latin hypercube sampling (PLHS) [22] due to its ability 

to sequentially generate sample points while progressively preserving the distributional properties of interest and to ensure that 

the set of samples reflects the entire range of the parameters, as demonstrated in past applications to earthquake engineering [5]. 

The final experimental design matrix 𝐗 has dimensions of 104 × 5, where the columns are the parameters of Table 1 and the 

rows are the number of permitted simulation runs as a trade-off between the available computational resources and time. Finally, 

104 training points were generated (one for each row of the design matrix), where the output of interest is the sliding SF. 

Multivariate fragility functions 

Logistic regression (LR) is commonly chosen to derive probabilistic tools because it provides a closed-form equation for 

estimating failure probabilities, which can be useful for practical applications. While LR is not a state-of-the-art approach, its 

prevalence, historical importance, and simple formulation make it a good choice for fragility-based safety assessments [23]. 

The principle of this classification algorithm is to transform the system response, g(𝐗), into the interval (0, 1) describing the 

probability 𝑃 (g(𝐗) = 1 ∣ 𝐗). We can transform the output of a linear model into the interval (0, 1) by passing it through a 

sigmoid function. In this study, LR was used to generate parameterized multivariate fragility functions to determine the 

probability of not reaching a certain SF, for given material and loading conditions. To this end, for each row of the experimental 

design matrix 𝐗, the SF is predicted using the CADAM3D. Target peak sliding SF (SFi) for extreme cases based on the Federal 

Energy Regulatory Commission (FERC) [14] guidelines were used. These guidelines propose SFs considering the level of 

knowledge in the strength parameters, where the required SFs are larger if no material tests are available. As such, two sliding 

SF at the base joint were considered for seismic loading: (i) SF=1.3 if material tests are available and (ii) SF=1.1 otherwise. 

Accordingly, two LR models were generated, one for each target SF. A binary vector 𝐘𝐶𝐿𝑆 was used to determine the 
condition of the structure, if the capacity is greater than the demand (𝑆𝐹 > 𝑆𝐹𝑖), there is no undesirable behavior, and 𝐘𝐶𝐿𝑆 = 

0; otherwise, 𝐘𝐶𝐿𝑆 = 1. The two final LR models are functions of the same parameters 𝐗, but have different explanatory 

functions. The general expression of the two LR models is presented in Eq. (1), but since the two models were generated for 

different SFs, the coefficients for each parameter are different. 

                                                             P(SF ≤ 𝑆𝐹𝑖|c, 𝜙,, 𝐻, 𝑃𝐺𝐴) =
exp⁡(𝑔(c,𝜙,,𝐻,𝑃𝐺𝐴))

1+exp⁡(𝑔(c,𝜙,,𝐻,𝑃𝐺𝐴))
                                                (1) 

A confusion matrix was used to evaluate the performance of the LR algorithm by comparing the actual versus the predicted 

class of data. The confusion matrix reports the numbers of true positives (unseating), true negatives (survival), false positives 

(false prediction of unseating), and false negatives (false prediction of survival). Therefore, any off-diagonal elements represent 

misclassification. The misclassification error (ME), defined as the ratio of the number of incorrectly classified samples to the 

total number of samples in the validation data, provides a simple measure of accuracy of the trained model. Table 3 presents 

the confusion matrices resulting from 10-fold cross-validation. The algorithm for 𝑆𝐹 = 1.1 and 𝑆𝐹 = 1.3 perform well, as is 

evident from the relatively small MEs of 7% and 8%, respectively. 

Table 3. Confusion matrix from 10-fold CV. 

True Class 

Predicted class 

SF=1.3 

Predicted class 

SF=1.1 

Survival Failure Survival Failure 

Survival 0.92 0.10 0.93 0.19 

Failure 0.08 0.90 0.07 0.81 
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Multidimensional integration 

The generated multivariate fragility functions can be used to evaluate the vulnerability of the case study dam. Eq. (1) depicts 

the capability the structure to withstand a specified event given a determined system configuration setting. Notably, the 

vulnerabilities of different components given the material and loading parameters can be found by simple substitution. 

Similarly, the sensitivity of fragility estimates to a specific parameter or combination of different parameters can be studied by 

varying some parameters while holding the others constant. This is shown in Figure 3 where fragility surfaces as a function of 

H-PGA and as a function of 𝜙-c were generated, while keeping all of the other parameters constant and equal to the values 

used in the deterministic analysis (Table 2). 

 

(a)                                                      (b) 

Figure 3. Fragility surfaces as a function of: (a) H-PGA and (b) 𝜙-c 

Additionally, for a particular set of conditioning parameters, if some or all of the remaining parameters are probabilistic in 

nature, the multivariate fragility function may be estimated by explicitly accounting for the effects of parameter uncertainties 

via integration [23]. This multidimensional integration strategy is applied as follows: 

                      P(SF ≤ 𝑆𝐹𝑖|[𝐱n, … , 𝐱n−k]) = ∫ ∫
exp(𝑔(𝐗))

1+exp(𝑔(𝐗))𝐱𝑛−𝑘−1
× 𝑓(𝐱1)𝐱1⁡…

…× 𝑓(𝐱n−k−1)d𝐱1…d𝐱n−k−1            (2) 

where 𝐗 = [𝐱1 ,…, 𝐱n] denotes the parameters involved in the calculation of the LR algorithm, [𝐱n, … , 𝐱n−k] is the subset of 

conditioning parameter in the fragility function, and 𝑓(𝐱1)⋯×𝑓(𝐱n-k-1) are the associated PDFs of the remaining parameters [𝐱1 

,…, 𝐱n-k-1]. Statistical independence is assumed between the predictor variables while conducting the multidimensional 

integration shown in Eq. (2). However, certain degree of correlation might be expected among the predictor variables, especially 

between the material properties [9]. The proposed methodology allows the possibility of efficiently including posterior 

uncertainty propagation by convolving the fragility function with updated probability density functions, as depicted in Eq. (2). 

SAFETY ASSESSMENT 

In cases where the safety standard is set too low, the stability of the structure may be inadequate to prevent disastrous 

consequences in the event of a failure. Conversely, if the standard is set too high, the project may not produce the expected 

economic benefits, resulting in wastage of water resources and incurring production and investment losses. Given the 

parametric fragility functions proposed in the previous section, it is important to understand the level of risk to which the 

structure is subjected. To evaluate the seismic performance of the studied structure under seismic events, the probability of not 

reaching a target SF was estimated for the PGA values in Table 1 corresponding to a 2475 and 10,000-year return period. Thus, 

for a given PGA prescribed by the NBCC [16–19], the corresponding probability shown in Table 4 was extracted from the 

fragility curves in Figure 3. The main outcome of this expedited safety assessment is that slightly different SFs, coupled with 

an outdated hazard model, yield very different estimates, which can have a direct impact on the application of safety guidelines 

and eventual decision making. 

Table 4. Probabilities of exceedance conditioned on PGA. 

Probability 
RP Deterministic 

analysis 

NBCC 

(yrs.) 2005 2010 2015 2020 

P(SF<1.1) 2475 0.301 0.017 0.000 0.000 0.023 

P(SF<1.1) 10000 - - - - 0.661 

P(SF<1.3) 2475 0.540 0.064 0.003 0.003 0.081 

P(SF<1.3) 10000 - - - - 0.856 
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     (a)                                                                              (b) 

Figure 3. Seismic fragility curves: (a) 0.05<PGA<0.35 g and (b) 0.05<PGA<0.135 g 

Verbal mapping scheme 

In situations where there isn't enough statistical data or probabilistic models for risk analyses of dams, it's possible to make 

qualitative estimates of the quantitative risk by considering expert engineering judgments about the probabilities of relevant 

events related to the specific failure mode. To do this, subjective probability methods based on the degree of belief can be used 

to estimate or assign probabilities. Table 5 presents the verbal mapping scheme for the safety analysis based on the United 

States Bureau of Reclamation (USBR) guidelines [24]. The following section provides the results of combining this scheme 

with the generated parameterized multivariate fragility functions to define acceptable range of values and parameter 

combinations that provide probabilities of not reaching a specific SF in line with the verbal mapping scheme.  

Table 5. Adopted verbal mapping scheme. 

Event likelihood Assigned probability 

Virtually certain 0.999 

Very likely 0.900 

Likely 0.750 

Neutral 0.500 

Unlikely 0.200 

Very unlikely 0.100 

Virtually Impossible 0.001 

Updating knowledge on model parameters and its impact 

When making decisions about future actions, it's important to consider a variety of factors such as risk estimates, the confidence 

in those estimates, the most influential issues affecting the risks, how the risks might be affected by specific inputs, the cost of 

taking further action, and the potential for decreasing uncertainties [9]. To reduce uncertainties, it may be necessary to undertake 

additional measures such as gathering more data, monitoring or conducting surveillance, or carrying out a more in-depth 

analysis of natural hazards. However, there may be instances where these efforts do not lead to a significant reduction in 

uncertainty or alter the estimate of fragility.  

In this study, parameterized fragility functions were implemented together with the multidimensional integration strategy 

presented in the previous sections to measure the sensitivity of the fragility estimates to changes in the key input assumptions. 

First, it is of interest to know how collecting additional information would affect the fragility estimates. One way to investigate 

this issue is to vary the input parameter PDFs and then examine the resulting effects on the fragility estimates. In light of new 

information, the PDFs presented in Table 6 were considered.  

Table 6. Updated model parameters’ PDFs 

Variable Distribution 
Distribution parameters 

Mean Standard deviation 

Cohesion, c (kPa) Lognormal 500 15 

Angle of friction,  () Lognormal 49 3 

Drain efficiency,  (%) Uniform 0.4 (min) 0.7 (max) 

Reservoir elevation, H (m) Normal 227.5 0.57 

PGA (g) RP=2475 yrs Lognormal 0.12 0.42 

PGA (g) RP=104 yrs Lognormal 0.28 0.33 
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The PDFs for cohesion and angle of friction were adjusted by incorporating more comprehensive field measurements and 

literature values from structures sharing similar geological features. As for the reservoir and drain efficiency, their PDF 

underwent revision through a statistical examination of past data. For the PGA, the PDF was modified based on the distribution 

of a series of 50 ground motion records selected for the dam site considering return periods of 2475 and 10,000 years consistent 

with the NBCC 2020 [19], as shown in Figure 4. Further information concerning the record selection method can be found on 

Segura et al. (2019) [5]. 

 

     (a)                                                                (b) 

Figure 4. PGA probability density function: (a) RP= 2475 yrs and (b) RP=10000 yrs 

Using the integration method outlined in Eq. (2), fragility curves were created by propagating the uncertainties in the updated 

parameters, without having to re-evaluate the structure. A step-by-step approach was implemented to prioritize a thorough 

examination of each parameter's additional information on the fragility estimates. Figure 5 illustrates the resulting fragility 

curves that consider the effect of the updated parameters for seismic events with 2475 years return period. Since cohesion is 

one of the most uncertain parameters in the seismic stability analysis of dam-type structures [25], the fragility curves are 

conditioned on its values. The red curve in Figure 5 represents the fragility function obtained from the multidimensional 

integration when there is no new information available, and all the parameter PDFs are uniformly distributed (Table 2). The 

remaining curves show the PDFs updated with one parameter at a time. Figure 5 reveals that the knowledge of PGA and drain 

efficiency has a significant impact on reducing the fragility estimates, while the effects of angle of friction and reservoir 

elevation are negligible. 

 

        (a)                                                                     (b) 

Figure 5. Updated fragility curves: (a) SF= 1.1 and (b) SF=1.3 

In the same manner, by updating the PDFs of two and three parameters at the time in the integration scheme and taking into 

account the target probability of 10% for a ‘very unlikely’ seismic event (Table 5), minimum cohesion values can be determined 

to provide a probability of not reaching an SF lower than 10%. As shown in Figure 5, when no additional information is 

available, the minimum cohesion values for a 10% probability are 1823 kPa and 1942 kPa for SF=1.1 and SF=1.3 respectively. 

In Figure 6 (a), the matrices with the minimum cohesion values in line with the target probability are presented if only one or 

two parameters are updated at the time. All the matrix values are lower than the minimum cohesion values if no additional 

information is available, reflecting the advantage of collecting new information. Additionally, Figure 6(a) indicates that for 

SF=1.3 acquiring information regarding PGA- and PGA- yields cohesion values of 178 kPa and 623 kPa, respectively, while 
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H- shows almost no improvement in the analysis. Likewise, if only the information of one parameter is updated at the time, 

PGA provides the lowest cohesion value, followed by the drain efficiency, angle of friction and lastly the reservoir. The same 

conclusions are observed for SF=1.1. Similarly, Figure 6(b) presents the minimum cohesion values for SF=1.3 if three 

parameters are updated at the time. It can be observed that improving the knowledge of PGA-- will require a cohesion value 

equal to 145 kPa to respect the 10% probability threshold, while improving the knowledge of all parameters at the time, will 

reduce this value to 90 kPa. 

 

        (a)                                                                     (b) 

Figure 6. Cohesion minimum values (kPa) for a target probability of 10%: (a) two parameters variation and (b) three 

parameters variation 

CONCLUSIONS 

The analysis of dams' stability is subject to uncertainties, particularly in defining loading conditions and material properties. 

To obtain more realistic results, it is essential to account for these sources of uncertainty using a probabilistic-based framework. 

Thus, this study aimed to create parameterized multivariate fragility functions to assess seismic safety. The PLHS method was 

utilized to generate 10,000 samples of the numerical model, which were then used to train a logistic regression algorithm to 

build fragility functions based on various loading and model parameters. Compared to traditional single-parameter models, 

multidimensional fragility models have several advantages, such as their ability to efficiently update and estimate fragility 

estimates with new data obtained through field instrumentation. Furthermore, a verbal mapping scheme was established based 

on expert judgment to assign target probability of exceedance for a seismic event with different return periods. This helped to 

provide recommendations regarding the minimum values of conditioning parameters needed to achieve the expected 

performance when considering 2475 years return periods and a fixed target probability of 10%. However, additional 

information may not significantly reduce uncertainty in fragility estimates. The proposed methodology can identify such cases 

and consider the value of additional effort to reduce uncertainty in selecting a course of action. It is noteworthy that for the 

studied structure, efforts should be directed towards conducting a comprehensive seismic hazard analysis representative of the 

dam site and effectively controlling drain efficiency to reduce the uncertainty in the cohesion. Similarly, if only one parameter 

could be modified, it would be more prudent to prioritize investments in increasing seismicity knowledge at the dam site. 

Finally, the use of parameterized fragility functions along with multidimensional integration was found to be an efficient and 

effective method for safety assessment, offering unique advantages over other conventional hazard- or structure-specific 

approaches. Ultimately, improved prediction of dam instability events can lead to better safety margins, increased resource 

efficiency, and minimized delays and shutdowns. 
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