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ABSTRACT 

Rapid post-earthquake seismic response and damage assessment of structure portfolios at the regional scale are essential to 
increase situational awareness and help decision-makers plan risk-informed emergency responses. Such earthquake impact 
assessment calls for the availability of high-resolution seismic inputs at every structure location. To this end, this study 
leverages recorded motions and machine learning techniques to directly simulate event-based ground motion (GM) time series 
at target sites. Due to sparse sensor instrumentation, GMs are not recorded to cover all structure sites, yet they bear the potential 
to be utilized to predict seismic inputs at any locations of interest. To achieve this, the study employs the Gaussian process 
regression (GPR) and autoencoder (AE) to simulate GM time series at target sites based on the existing motion inventory 
recorded from one earthquake event. The AE is used to extract the recorded GMs’ low-dimensional latent features, which are 
further treated as random Gaussian variables. The GPR model is then trained to fit the spatial distribution of these low-
dimensional latent feature vectors, and the target GMs are generated by further decoding the latent features. The method is 
verified using the 2011 Tohoku earthquake GMs recorded by the seismograph network stations in Japan. The proposed method 
overcomes the long-standing difficulty of determining intra-sensor GMs and provides valuable motion inputs to facilitate 
regional seismic damage assessment. 

Keywords: Ground motion simulation, Gaussian process regression, Autoencoder, Machine learning, Regional seismic damage 
assessment. 

INTRODUCTION 

A reliable assessment of structural damage after an earthquake event is essential for decision-makers to properly allocate 
resources for emergency responses [1]. Simulation-based seismic analyses of buildings and infrastructures need the inputs of 
earthquake ground motions (GMs), which can be obtained through motions recorded at spatially distributed seismograph 
stations. The distance between adjacent stations is generally larger than 10 km [2], resulting in that only a limited number of 
GM records are available. In addition, seismic damage of structure inventories within the intra-station space shows significant 
variability due to differences associated with geological conditions, structural geometry, material properties, design details, etc 
[3]. Therefore, interpolating intra-station GM time series is necessary for assessing the seismic damage of structures at specific 
locations of interest.  

Earthquake GMs can be generated through the physics-based method, coherence function-based method, and data-driven 
method. Physics-based method [4] makes assumptions about the earthquake source, propagation media, and local site effects. 
The GMs are generated by utilizing physical laws to simulate the evolution of fault rupture and wave propagation in the 
nonlinear media. However, this method requires numerous underground shear-wave velocity data and fault parameters as the 
simulation inputs. The complete simulation process is also time-consuming, making it not applicable to achieve rapid post-
earthquake damage assessment. The coherence function-based method employs the power spectra density model and coherence 
functions to construct the cross-power spectral matrix, which captures the spatial correlation of GMs [2,5]. The performance 
of the method is limited by the space and location of seismograph stations: it is more suitable for analyzing array records with 
small spacing. The data-driven method gains popularity in recent years because of the development of data acquisition, storage 
and processing techniques [6]. Algorithms such as inverse-distance-weighted (IDW) and kriging analysis have been utilized in 
previous studies to interpolate GMs based on recorded data. For example, the IDW method was used to estimate the peak 
ground acceleration (PGA) of the 2016 Kumamoto earthquake [7], while the accuracy of the method has not been presented in 
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detail. The interpolation of low-frequency GMs has been conducted through the array completion method [8], but this method 
requires the distance between stations to be within 1 km. Likewise, Huang and Wang [9] used wavelet packet decomposition 
and Kriging analysis-based spatial correlation of wavelet packet parameters to construct a record time history at an unmeasured 
site. Lu et al. [2] applied IDW to interpolate the response spectra at target locations, and used continuous wavelet transform to 
derive GM time series. These methods can be used to quickly obtain the GM fields in the disaster area, but their accuracy and 
applicability are questionable when 1) the station space is large; 2) GMs feature a variety of distinct features (e.g., frequency 
contents, magnitudes, durations).  

To this end, this study develops a data-driven framework to generate regional GMs using recorded signals at seismograph 
stations. Convolutional variational autoencoder (CVAE) [10] first extracts the latent variables from high dimensional GM data. 
Afterwards, latent vectors are interpolated through the Gaussian process regression (GPR) and further converted back as GMs 
at target locations. The accuracy and applicability of the proposed framework are verified against the ground motion dataset 
recorded from the 2011 Tohoku earthquake.  

VAE-GPR FRAMEWORK FOR REGIONAL GROUND MOTION GENERATION 

As shown in Figure 1, the study proposes an end-to-end framework to interpolate spatially correlated GMs. The framework 
consists of three integrated parts: (1) signal transform and reconstruction of GMs through short-time Fourier transform (STFT); 
(2) dimension reduction and feature extraction through convolutional variational autoencoder (CVAE); (3) GM interpolation 
in latent space through Gaussian process regression (GPR). Technical details of each part are discussed below. 

 
Figure 1. Proposed CNN surrogate model for structural response prediction. 

 
Figure 2. Ground motion representations: (a) waveform, (b) Fourier spectrum and (c) spectrogram. 

Signal transformation and reconstruction through short-time Fourier transform 

GM results from rupture movement at the earthquake epicenter and the propagation of the signal wave to different locations 
through distinct media. As such, the GMs recorded at spatially distributed seismograph stations show variations in frequency 
contents, amplitudes, and durations. GM is usually represented by a one-dimensional (1D) waveform in the time domain. 
However, the time domain representation does not expose the GM’s frequency features, which are important elements for 
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nonstationary signals. In this regard, the spectrogram representation (Figure 2) is adopted here, given its ability to capture the 
temporal evolution of different frequency contents in time series [11]. The spectrogram can be developed by using various 
signal processing methods, such as STFT and wavelet analysis. This study adopts the STFT algorithm, as shown in Eq. (1), 
which subdivides the time series into small time windows with equal length, and performs Fourier transform on each individual 
time window. 

𝑆𝑆(𝜏𝜏,𝜔𝜔) = � 𝑥𝑥(𝑡𝑡)𝑤𝑤(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡
∞

−∞
 (1) 

where 𝑥𝑥(𝑡𝑡) is the 1D time series, 𝑤𝑤(𝜏𝜏) is the window function, and 𝑆𝑆(𝜏𝜏,𝜔𝜔) is the STFT value at frequency 𝜔𝜔 and time 𝜏𝜏. It is 
noted that 𝑆𝑆(𝜏𝜏,𝜔𝜔) is a complex number, with its spectrogram, namely the norm |𝑆𝑆(𝜏𝜏,𝜔𝜔)|, captures the motion’s energy 
distribution at different time instants and frequencies. Eq. (1) transforms 1D time series into 2D digital images, which facilitate 
the application of computer vision techniques, such as image classification [12,13], object detection [14], and semantic 
segmentation [15,16], etc. The STFT algorithm involves multiple hyperparameters, such as the length and overlapping of the 
time window, which may affect the time/frequency resolution of the spectrogram [11]. 

Reverting GM spectrograms to their original time series demands the STFT algorithm to be invertible. This reversibility is 
accomplished by utilizing window functions that conform to the constant overlap-add (COLA) constraint. [17]. The phase 
information for the waveform can be estimated iteratively through the Griffin-Lim algorithm [18]. As shown in Eq. (2), ISTFT 
uses spectrogram and phase information to compute the inverse Fourier transform at each time window, as well as overlaps 
and adds each individual inverted signal to the entire time sequence [19].  

𝑥𝑥(𝑡𝑡) = � � 𝑆𝑆(𝜏𝜏,𝜔𝜔)𝑒𝑒𝑖𝑖2𝜋𝜋𝑖𝑖𝜋𝜋𝑑𝑑𝜔𝜔
𝑙𝑙
2

−𝑙𝑙2

∞

𝜋𝜋=−∞

 (2) 

Convolutional variational autoencoder (CVAE) 

The CVAE model is used in this study to reduce the dimensionality of the GM spectrogram and extract its latent features in a 
nonlinear manner [20,21]. As shown in Figure 3, the CVAE model is composed of an encoder and a decoder. Having different 
kernel, stride, and channel sizes, the convolutional layers [22] serve as the architecture for the encoder to compress the input 
spectrogram into a latent space and dig out its embedded latent features. In particular, model nonlinearity is introduced through 
the ReLU layer [23] that follows each convolutional layer. In contrast, the latent space is generated in a fully connected layer 
located at the end of the encoder. Subsequently, deconvolutional layers [24] are established to serve as the decoder for 
reconstructing the spectrogram from its latent features. Essentially, the deconvolutional layer can be regarded as a layer that 
combines the up-sampling layer and the 2D convolutional layer (Conv2D) [25].  

 
Figure 3. The architecture of the CVAE model. 

The CVAE model encodes the input data into standard Gaussian distributions, through which the latent space is regularized 
and the model is less likely to overfit. As a result, data outputs from the encoder are the means and variances determining the 
distributions of latent variables; latent features can then be resampled using the reparameterization trick [26], as shown in Eq. 
(3). 

𝑧𝑧𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜎𝜎𝑖𝑖 ∙ 𝜖𝜖 (3) 

where 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 are the mean and standard deviation for the ith latent variable 𝑧𝑧𝑖𝑖, and 𝜖𝜖 is a noise term following a standard 
normal distribution.  
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The training of a CVAE model is to minimize two types of losses – the reconstruction loss between data inputs of the encoder 
and data outputs from the decoder, and the Kullback-Leibler (KL) divergence [27] that measures the distance between the latent 
distribution and standard Gaussian distribution. To further improve the reconstruction quality of the decoder, a discriminator 
[28] is trained to match the features of reconstructed spectrograms with those of true spectrograms, through which the 
reconstruction loss is defined as the difference between intermediate outputs from the discriminator. In a probabilistic 
representation, the latent variable z associated with GM spectrogram x is assumed to follow a prior standard Gaussian 
distribution p𝜃𝜃(𝑧𝑧), whereas the developed CVAE model encodes its posterior distribution q𝜙𝜙(𝑧𝑧|𝑥𝑥) and decodes its distribution 
likelihood 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) for spectrogram reconstruction. To this end, the loss function for CVAE is formulated as Eq. (4). 

𝐿𝐿(𝜙𝜙,𝜃𝜃) = −𝔼𝔼𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧)] + 𝛽𝛽𝛽𝛽𝐿𝐿�𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥)��𝑝𝑝𝜃𝜃(𝑧𝑧)� (4) 

where the first term computes the reconstruction error, the second term is the KL divergence as a regularizer for the latent 
space, and the 𝛽𝛽 value controls the strength of regularization. The encoder parameter 𝜙𝜙 and decoder parameter 𝜃𝜃 are learned 
during the training process to minimize the loss function in Eq. (4). 

The CVAE model and discriminator are trained in an adversarial manner. Namely, the CVAE model aims to minimize the KL 
divergence and reconstruction loss (i.e., cheat the discriminator), while the discriminator aims to distinguish the reconstruction 
from the ground truth. Furthermore, the adaptive learning-rate method is considered to avoid neither slow convergence nor fast 
oscillation [29]. This study employs the adaptive moment estimation algorithm (Adam) as the adaptive learning method, given 
its efficiency in training the model with a large dataset and parameters, and its low storage memory requirement [30]. 

Gaussian process regression (GPR) 

Gaussian process (GP) [31] is a non-parameterized supervised learning method that predicts the distribution of functions. The 
model assumes that every finite collection of data points from the latent function follows a multivariate normal distribution, 
whose correlation is determined by kernel functions. The data generation process from a GP model can be represented by Eq. 
(5): 

𝑓𝑓(𝒙𝒙)~𝒢𝒢𝒢𝒢�𝑚𝑚(𝒙𝒙), 𝑘𝑘(𝒙𝒙,𝒙𝒙′)� (5) 

where 𝑚𝑚(𝒙𝒙) is the mean function, and 𝑘𝑘(𝒙𝒙,𝒙𝒙′) represents the kernel function. The choice of kernel functions depends on the 
expected pattern in the data, such as the smoothness. One of the most widely used kernel functions is the radial basis function 
(RBF) kernel, which assumes the correlation between two points decays exponentially with the increase of their distance, as 
formulated in Eq. (6). The 𝜎𝜎𝑓𝑓 and 𝑙𝑙 are signal standard deviation and length scale, respectively. Matern kernels in Eq. (7) can 
be regarded as the generalization of the RBF kernel, with an additional parameter 𝜈𝜈 controlling the smoothness of the resultant 
function. 

𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙,𝒙𝒙′) = 𝜎𝜎𝑓𝑓2 exp �−
|𝒙𝒙 − 𝒙𝒙′|2

2𝑙𝑙2
�  (6) 

𝑘𝑘𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀(𝒙𝒙,𝒙𝒙′) =
1

Γ(𝜈𝜈)2𝜈𝜈−1
�
√2𝜈𝜈
𝑙𝑙
𝑑𝑑(𝒙𝒙,𝒙𝒙′)�

𝜈𝜈

𝛽𝛽𝜈𝜈 �
√2𝜈𝜈
𝑙𝑙
𝑑𝑑(𝒙𝒙,𝒙𝒙′)�  (7) 

The latent variables of the recorded GMs at seismograph stations are used to fit the GPR model, which is capable of sampling 
the latent representation at any location. The prediction of intra-station GMs is achieved by decoding the interpolated latent 
variables using trained CVAE models. 
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Figure 4. Earthquake GMs recorded at seismograph stations and split of the dataset. 

 

CASE STUDY - 2011 TOHOKU EARTHQUAKE 

The 2011 Tohoku earthquake was reported as the most powerful earthquake event ever recorded in Japan. The epicenter of the 
earthquake is located undersea in the Pacific Ocean, and the earthquake magnitude is 9.0 𝑀𝑀𝑤𝑤. This megathrust earthquake and 
its subsequent tsunami induced 19,759 deaths, 6,242 injured, and 2,553 people missing [32]. After the event, the Japanese 
National Research Institute for Earth Science and Disaster Resilience (NIED) provided strong ground motion data collected by 
more than 1,000 seismograph stations nationwide. The locations of the seismograph stations are provided in Figure 4. In 
particular, 701 data samples are available from the NIED dataset for the 2011 Tohoku earthquake event. The selected data are 
shuffled and split into 601 training samples and 100 testing samples, as illustrated in Figure 4. 

Data preprocessing and CVAE training 

The selected datasets are transformed into spectrograms using STFT. The time window length for STFT is selected to be 2056 
data points, and the overlapping length is considered 1/4 of the time window length. In addition, the Hanning function [33] is 
employed to avoid frequency leakage and satisfy the COLA requirement for STFT to be invertible. The time and frequency are 
truncated as 300s and 40Hz, respectively, without significant information loss. 

The CVAE model is composed of an encoder with six convolutional layers, and a decoder with six deconvolutional layers [34]. 
The activation layers use the ReLU [35] function, while the output layer of the decoder implements the sigmoid function. The 
latent space is selected to have three latent variables, with which the CVAE model achieves the balance between reconstruction 
quality and latent space structurization. The discriminator has the same architecture as the encoder, with the output layer 
replaced by a logistic classifier. 

The spectrograms are standardized before being fed into the CVAE model for training. Given the selected model architecture 
and hyperparameters, the CVAE model is trained against the 601 training samples using the mentioned mini-batch gradient 
descent algorithm with the Adam optimizer. The learning rate is set to be 1 × 10−4, the batch size is selected as 50, and the 
training epoch is 3000. The trained model is capable of compressing spectrograms into low-dimensional representations and 
reconstructing them back by using the embedded data information in the latent space. 

Figure 5 compares the reconstruction of a sample in the testing dataset with its ground truth. The spectrogram comparison 
indicates a good match of GM amplitudes at different time instants and frequency ranges. Essentially, the reconstructed 
spectrogram captures the duration characteristics of the GM. As proved through the time-history comparison in the same figure, 
the reconstructed accelerogram is on top of the original GM with the same PGA, phase information, frequency content, and 
duration. The mean values of the latent variables are standardized to the interval between 0 and 1, and the distributions of the 
three standardized latent variables are shown in Figure 6.  

epicenter
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Figure 5. Comparison between CVAE reconstructed GM and ground truth. 

 
Figure 6. Distribution of latent variables. 

GPR for GM interpolation 

The CVAE model encodes the data samples in the training set into three latent variables, as shown in Figure 6. The GPR model 
is further used to fit those latent variables independently and predicts the associated spatial distributions. Latitude, longitude, 
and altitude values serve as the inputs for the GPR, and the latent variables constitute the output. The Matern kernels plus White 
noise kernels are used for GPR models, where the initial length scale and standard deviation are set to be 1.0 and 0.05, 
respectively. The L-BFGS-B algorithm [36] is used to optimize the GPR model, and the results are shown in Table 1. Figure 7 
shows the spatial distributions of GPR-fitted latent variable mean values and the corresponding standard deviations. The latent 
codes shown in Table 1 are implicitly associated with GMs’ physical features, such as duration, frequency content and source 
distance.  

 

Table 1. Trained parameters for the GPR model. 
Latent variables Noise level Length scale 
Code 1 0.00622 1.070 
Code 2 0.00935 0.985 
Code 3 0.0230 0.617 

 

The GPR model is further assessed by calculating the relative error between the GPR prediction and the true values for all the 
701 samples in the dataset, as illustrated in Figure 7(d). It can be observed that the GPR model can accurately predict all three 
latent variables: most samples in both the training and testing sets have a relative error of less than 20%. 
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(a)  

(b)  

(c)  

(d)  

Figure 7. Distributions of latent codes fitted by GPR model. (a) latent varibale 1, (b) latent variable 2, (c) latent variable 3 
and (d) relative error. 

Decoding regional GMs 

The GPR-interpolated latent variables are fed into the decoder for being reconstructed into GM spectrograms. The Griffin-Lim 
algorithm is used to find the phase information for ISTFT to estimate the time history of GMs. In addition, the GPR model 
provides a viable way to interpolate the peak ground accelerations (PGAs) for the region, and the reconstructed GM time series 
are scaled to the corresponding PGA at each location. Figure 8(a) shows the interpolation and standard deviation of PGA values 
for the earthquake event. The standard deviation is almost zeros everywhere, indicating the confident prediction of the GPR 
model. Figures 8(b) and 8(c) compare the predicted GMs in the training and testing sets with their ground truth data, 
respectively. The prediction is made by GPR interpolation and CVAE decoding. The comparison demonstrates that the 
proposed framework is capable of predicting GMs with accurate PGA, phase information, and duration. 
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(a)  

(b)  

(c)  

Figure 8. Interpolation of regional GMs. (a) Interpolation of peak ground acceleration, Comparison of a sample in the (b) 
training set, and (c) testing set. 

CONCLUSIONS 

The study integrates CVAE and GPR into an end-to-end analysis framework to predict the regional GM field based on a limited 
number of GMs recorded at seismograph stations. The STFT algorithm is first used to transform the GM time series into 
spectrograms, and the CVAE model compresses high-dimensional spectrograms into a low-dimensional latent space. The GPR 
models are trained to fit the spatial distribution of latent variables, whereas the trained CVAE model is further utilized to 
reconstruct latent variables into spectrograms. The ISTFT is finally used to transform spectrograms back to the time series data 
of GMs. The proposed framework is applied to the recorded GM data from the 2011 Tohoku earthquake event to predict 
intrastation GMs. The case study reveals that the predicted GMs capture the amplitude, frequency content, and duration 
characteristics of the ground truth data. The proposed framework provides valuable GM inputs to enable rapid post-earthquake 
seismic damage assessment at the regional scale. 

The CVAE and GPR models in the study are trained independently, which cannot explicitly consider the dependency between 
the latent variable distribution and the spatial correlation of GMs. In future work, a joint CVAE-GPR model will be developed 
and optimized to capture the possible dependency between latent variables and spatial correlations spreading the region. 
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