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ABSTRACT 

Steel beam-column connections with shape memory alloy (SMA) bolts provide self-centering behavior and eliminate 

permanent deformations in earthquake-resilient steel moment frames. This paper presents the development and frame modeling 

application of a freely available Graphical User Interface (GUI) for predicting the cyclic and self-centering response of extended 

endplate steel connections with superelastic SMA bolts. A database of moment-rotation response is created from the results of 

seventy-two 3D finite-element simulations and seven experimentally tested specimens. The study trains different machine 

learning algorithms, including Artificial Neural Networks (ANN), Decision Tree (DT), Random Forest (RF), Extreme Gradient 

Boosted Trees (ExGBT), Light Gradient Boosted Trees (LGBT), TensorFlow Deep Learning (TFDL), and Keras Deep Residual 

Neural Network (KDP). The accuracy of the algorithms is compared in terms of two performance metrics, root mean square 

error (RMSE) and coefficient of determination (R2). The trained ANNs, which show the highest accuracy with an R2 ranging 

from 0.92 to 0.99, are chosen to develop a Graphical User Interface (GUI). To demonstrate the application of the developed 

predictive tool, a phenomenological model of moment frames with SMA connections is developed and verified in OpenSees 

based on experimental test results. A two-stage validation study is performed to assess the accuracy of the proposed 

phenomenological model. The validation study uses the predictive tool to develop the phenomenological model for SMA-based 

beam-to-column connection. It is shown that the results of the predictive tool, the phenomenological model, and the 3D finite-

element models in ANSYS are in line with each other with high accuracy. By using the developed tool, the prediction of the 

cyclic and self-centering response of a typical SMA connection can be performed rapidly – taking three minutes in OpenSees 

compared to seven hours in ANSYS. 

Keywords: Machine learning, Earthquake resilience, Shape memory alloy (SMA), Self-centering endplate connection, 

Artificial neural networks.  

INTRODUCTION 

Shape Memory Alloys (SMA) are metallic alloys with two favorable mechanical behavior: 1) undergoing large deformations; 

2) recovering their original shape upon unloading or heating with minimal residual deformation. The exposure of the SMA 

materials to stress or temperature results in solid-to-solid phase transformations, which in turn can result in shape recovery. 

The unique behavior of the SMA materials, i.e., deformation capacity and shape recovery, convinced many researchers to use 

SMA materials in structural systems to provide a self-centering behavior ([1–4], among others). Self-centering structures are 

defined as structures that have the capability to return to their plumb position following lateral loading, such as earthquake 

loading. 

While there exist different applications of the SMA materials in structural systems, bolted SMA-based beam-to-column 

connections have shown effective self-centering behavior (e.g., [5–8]). Leon et al. [10] are among the earliest researchers who 

proposed the application of SMA materials in beam-to-column connections. In their study, two full-scale connections were 

tested according to the SAC testing protocol. Their results showed that the connections exhibit stable and repeatable hysteresis 

loops for rotations up to 4%. In a study by Ocel et al. [5], following testing two-full scale connections with large SMA tendons, 

the SMA tendons were heated to remove residual deformations, and then the connections were subjected to loading. The 
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connections exhibited repeatable and stable hysteretic behavior while up to 76% of the residual deformations were removed by 

initiating the Shape Memory Effect of the SMA tendons, i.e., by heating the SMA tendons. Ma et al. [11,12] proposed proof-

of-concept superelastic SMA-based extended endplate connections in which the high-strength bolts were replaced with 

superelastic SMA bolts. Based on the results of their numerical studies, SMA-based extended endplate connections exhibited 

a self-centering behavior while a moderate level of energy dissipation capacity was observed in the proposed connections. 

Following the Ma et al. studies on the proof-of-concept SMA-based connections, Fang et al. [6] performed eight experimental 

tests, including seven SMA-based and one regular extended endplate connection. In the tested specimens, superelastic SMA 

bolts were used in the extended endplate connections. Their results confirmed that while in the conventional extended endplate 

connections, the ductility and energy dissipations were accommodated by deformations in the beam, column, and endplate, in 

the SMA-based extended endplate connections, the ductility and energy dissipations were provided by SMA bolts; therefore, 

other parts of the beam-to-column connections, including endplate, beam, and column were within their elastic range. Confining 

the plastic deformations in the SMA bolts results in developing a superelastic hinge in the SMA-based extended endplate 

connections that reduces the repairs in structural members and, consequently, downtime of the building after a seismic event. 

The tested specimens by Fang et al. [6] showed a great recentering capability with a moderate energy dissipations capacity. 

While there exist other research efforts aimed at examining the seismic behavior of the extended endplate connections with 

SMA bolts ([9,13,14], among others), this research intends to characterize the seismic properties of the SMA-based extended 

endplate connections using Machine Learning (ML) algorithms particularly Artificial Neural Networks (ANN). 

SCOPE AND METHODOLOGY 

In this study, the database developed by the authors [15], which contains seventy-two detailed finite element simulations, along 

with seven experimentally tested specimens were used to propose a predictive tool for the backbone curve parameters of the 

SMA-based extended endplate connections. Schematic views of the bolted SMA-based beam-to-column connections and also 

developed backbone curve are shown in Figure 1. The considered backbone curve herein can be associated with the generalized 

backbone curve of the ASCE 41-17 [16]. As shown in Figure 1, from A to B, the connection has an elastic behavior. After point 

B, the SMA materials enter their forward transformation phase. At point C, the outmost SMA bolts reach their fracture strain, 

which in turn results in a drastic reduction in the moment capacity of the connections (line CD in Figure 1). Following point C, 

the loading continues to achieve the fracture strain in the second row of the SMA bolts. Post-yield deformation capacity of the 

connections is defined with parameters a and b (Figure 1b). In fact, a and b are post-yield rotations up to 𝜃𝑐 and 𝜃𝑒, respectively.  

 

  

(a)                                                                                               (b) 

Figure 1. Schematic view of: (a) the bolted SMA-based beam-to-column connections; (b) proposed backbone curve.  

 

In this study, it is assumed that the SMA materials will fracture upon reaching a strain level of 𝜀𝑓𝑟 [15] that is formulated as 

follows: 
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𝜀𝑓𝑟 = 𝜀𝐿 +
𝜎𝑀𝑓

𝐸𝑆𝑀𝐴
 (1) 

where 𝜀𝐿 is the maximum transformation strain of the SMA bolts, 𝜎𝑀𝑓 is the martensite finish stress, and 𝐸𝑆𝑀𝐴 stands for Young 

Modulus of elasticity of the SMA materials. 

Based on previous studies by the authors [8,9], ten factors were identified as influential factors on the seismic response of the 

backbone curves, which are listed in Table 1. Using these significant factors along with their ranges, a dataset of seventy-two 

factor combinations was developed using the Response Surface Methodology (RSM). Factor combinations used in this study 

can be found elsewhere [15]. For each factor combination, two finite element models are developed in ANSYS mechanical 

APDL [17]. In the first finite element model, the connection is loaded up to 0.07 rad rotation to capture the rotation at which 

the outmost bolts achieve their fracture strain as defined in Eq. 1. In the second finite element model, the first row of the SMA 

bolts is removed, and then the connection is loaded up to 0.1 rad rotation to capture the rotation at which the second row of the 

SMA bolts are fractured. A backbone curve similar to Figure 1 is obtained for each factor combination by assembling the 

backbone curves achieved from two finite element simulations. Further details on developing the dataset can be found in Ref. 

[15]. 

 

Table 1. Input factors and ranges. 

 Factor Symbol Minimum Maximum Unit 

1 Martensite start stress σMs 280 380 MPa 

2 Martensite finish stress σMf 410 590 MPa 

3 Austenite start stress σAs 170 250 MPa 

4 Austenite finish stress σAf 70 138 MPa 

5 Maximum transformation strain ɛL 0.07 0.13 - 

6 Bolt pretension strain  ɛpt 0.005 0.015 - 

7 Bolt length Lbolt 300 350 mm 

8 Bolt diameter Dbolt 10 25 mm 

9 Beam depth hbeam 150 610 mm 

10 Beam length Lb 1500 4500 mm 

 

MACHINE LEARNING FOR PREDICTING BACKBONE CURVE PARAMETERS 

In this study, Artificial Neural Networks (ANN), Decision Tree (DT), Random Forest (RF), Extreme Gradient Boosted Trees 

(ExGBT), Light Gradient Boosted Trees (LGBT), TensorFlow Deep Learning (TFDL), and Keras Deep Residual Neural 

Network (KDP) were trained to predict the backbone curve parameters of the SMA-based extended endplate connections. Ten 

influential design parameters, as listed Table 1, are the inputs for the algorithms. For each backbone curve parameter, including 

𝜃𝑏, 𝜃𝑐, 𝜃𝑒, 𝑀𝑏, 𝑀𝑐, and 𝑀𝑒, a separate algorithm is trained. Finally, a single predictive model for backbone curve parameters 

is developed using trained ANNs, which gives us the backbone curve of the SMA-based extended endplate connections upon 

inserting ten input parameters.  

 

Artificial Neural Networks 

ANN are computational models that contain hundreds of single units, artificial neurons, connected with coefficients (weights) 

in which the human’s brain working principles are emulated to conduct learning and then the prediction. ANNs can be trained 

to model a complex problem with many parameters where the training process is performed using proper exemplars [18]. ANN 

consists of interconnected neurons that are processing elements having similar characteristics, such as inputs, synaptic strength, 

activation outputs, and bias [19]. The processing units, i.e., input, hidden, and output units, are composed of a layered structure 

that carries the weights of the network.  The training process of a network is associated with adjusting the weights in a network 

so that the optimum weight space of the network is achieved.  

ANNs are used to determine the nonlinear relationship between the input and output parameters of the backbone curve. In this 

study, a multilayer feedforward backward propagation of errors, i.e., backpropagation, the network is used. The reason for 

which the backpropagation network is selected is its capability to find complex relationships between inputs and outputs. In 
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the backpropagation networks, the output errors are propagated back using the same connections used in the feedforward 

mechanism by the derivation of the feedforward transfer function [20,21]. The neurons are placed in three separate layers, 

including the input layer, hidden layer, and output layer. The input layer has ten neurons, reflecting ten design parameters.  

Neurons in the input layer pass the scaled input data to the hidden layer using weights. The hidden layer has different neurons 

for each response variable, obtained using hit and trial methods to have maximum accuracy. The output layer is comprised of 

a single neuron that represents the backbone curve parameter. In this study, the tangent sigmoid transfer (tansig), which 

generates an output between 0 and 1, is used as an activation function for the hidden layer, whereas pure linear (purelin) 

functions are used as activation functions at the output layer. It is worth mentioning that the goal of using nonlinear transform 

functions, e.g., the tangent sigmoid transfer, is to provide the network with the capability of learning the nonlinear behavior 

between input and output layers.  

The design matrix, which was developed using RSM, is used as the input matrix while the finite element results were used as 

outputs. Multilayer perceptron architecture of feedforward ANN was developed. The developed design matrix using RSM 

contained seventy-two factor combinations from which fifty factor combinations, i.e., 70% of the dataset were used to train the 

network, eleven factor combinations (15% of the dataset) were used for validation, and the last eleven factor combinations 

(15% of the entire dataset) were used for the sake of testing the network. The performance of the networks was evaluated using 

the coefficient of determination (R2) and root mean square error (RMSE). Note that the coefficient of correlation estimates the 

relationship between model output and actual values.  

 

Data Preprocessing 

The input data for ML algorithms were normalized to lie within a range of 0 to 1. The reason for which the input data has been 

normalized was to prevent the saturation region of the log-sigmoid activation function. The saturation problem can result in a 

low learning rate of the networks [22]. Eq. 1 was used to normalize the inputs of neural networks.  

𝜑
𝑚
=

𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1) 

where 𝜑
𝑚

 is the normalized data, and x indicates the rough data. 

ML ALGORITHMS’ RESULTS 

This section summarizes the results of the trained ML algorithms. For each backbone curve parameter, a separate algorithm 

was trained. The results of the trained algorithms are listed in Table 2. The coefficient of determination, R2, and root-mean-

square-error, RMSE, were considered as performance metrics to compare the performance of the trained ML algorithms.  

As per Table 2, ANN outperforms other algorithms. It should be noted that except for ANN, other algorithms’ hyperparameters 

were assigned according to the framework by suggested by Naser et al.  [23]. Therefore, it might be a biased comparison if we 

compare the performance of ANN with other ML algorithms. Excluding ANNs and comparing the performance of other 

algorithms, it can be observed that no single algorithm outperforms other algorithms for all backbone curve parameters. By 

taking into account the overall performance of the algorithms, however, ExGBT and KDP are the first and second best-ranked 

algorithms, while TFDL and DT have the poorest performance.  

 

GRAPHICAL USER INTERFACE PREDICTIVE TOOL 

The trained neural networks were used to develop a predictive tool for the response prediction of SMA-based extended endplate 

connections. The developed tool will be helpful to eliminate the need for a detailed finite element modeling of the connections 

and consequently reduce computational expenses. With this goal, the trained ANNs were used to develop a Graphical User 

Interface (GUI) to predict the backbone curve and self-centering response of SMA-based extended endplate connections 

interactively. The developed predictive tool is freely available online [24]. As shown in Figure 2, ten significant parameters are 

required to be entered into the developed tool. An unloading path is also included to facilitate implementing the proposed 

response curve in other software programs, such as OpenSees (using SelfCentering material, for example). As shown in Figure 

2, two switch keys are provided in the developed tool by which the return path and the moment rotation values at different 

points can be shown. 
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Table 2. Results of the trained ML algorithms using the developed database. 

Parameter metric 

DT RF ExGBT LGBT TFDL KDP ANN 

Train Test Train Test Train Test Train Test Train Test Train Test Train Test 

𝜃𝐵 

R2 1.00 0.79 0.89 0.78 1.00 0.88 0.92 0.86 0.86 0.68 0.79 0.52 0.93 0.91 

RMSE 0.00 0.0010 0.0008 0.0014 0.0001 0.0010 0.0007 0.0011 0.0010 0.0016 0.0012 0.0015 0.0007 0.0010 

𝜃𝐶  

R2 1.00 0.55 0.87 0.74 1.00 0.82 0.94 0.91 0.61 0.42 0.93 0.89 0.98 0.91 

RMSE 0.0006 0.0077 0.0041 0.0073 0.0007 0.0045 0.0031 0.0030 0.0087 0.0090 0.0030 0.0040 0.0020 0.0040 

𝜃𝐸 

R2 1.00 0.76 0.91 0.91 1.00 0.86 0.95 0.93 0.64 0.28 0.93 0.92 0.99 0.96 

RMSE 0.00 0.010 0.005 0.005 0.00 0.006 0.004 0.004 0.008 0.018 0.005 0.004 0.001 0.004 

𝑀𝐵 

R2 1.00 0.98 0.97 0.92 1.00 0.99 0.98 0.97 0.92 0.90 1.00 0.99 0.99 0.99 

RMSE 0 33.4 35.5 60.5 1.2 23.3 32.3 42.1 58.4 70.3 12.4 17.2 14.9 17.0 

𝑀𝐶 

R2 1.00 0.94 0.98 0.96 1.00 0.99 0.98 0.98 0.87 0.71 1.00 0.99 1.00 0.99 

RMSE 0.37 72.9 37. 7 56.6 1.0 26.8 43.1 41.0 102.5 142.3 8.3 17.2 6.3 26.4 

𝑀𝐸 

R2 1.00 0.95 0.97 0.94 1.00 0.97 0.97 0.94 0.97 0.91 1.00 1.00 1.00 0.99 

RMSE 1 36.0 25.1 32.2 0.7 29.0 23.6 45.2 25.6 55.0 6.0 9.3 9.0 9.1 

β 

R2 1.00 0.90 0.91 0.84 1.00 0.90 0.92 0.91 0.73 0.62 0.91 0.89 0.97 0.97 

RMSE 0.00 0.03 0.03 0.05 0.0 0.03 0.03 0.03 0.06 0.06 0.40 0.30 0.02 0.02 

 

 

 
Figure 2. The developed MATLAB tool for predicting the backbone curve of SMA-based endplate connections. 
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DEVELOPING HIGH-FIDELITY FE MODELS USING THE PROPOSED PREDICTIVE TOOL 

In this section, the application of the developed predictive tool for developing computationally effective FE models of the 

beam-to-column connections is illustrated.   

The proposed backbone curve was used to develop a phenomenological model for SMA-based endplate connections in 

OpenSees [25]. Self-Centering, Pinching4, Steel01 materials in OpenSees acting in parallel were considered to model beam-

to-column connections. A rotational spring with a parallel material, including the Self-Centering, Pinching4, and Steel01 

materials, was considered to simulate the self-centering response of the bolted SMA-based beam-to-column connections. Using 

an iterative process, the percentage contribution of the Self-Centering, Pinching4, and Steel01 were considered as 0.9, 0.05, 

and 0.05, respectively. In the proposed phenomenological model, the beam and column are modeled using elastic beam-column 

elements [26]. The verification of the presented phenomenological against experimental test data can be found elsewhere [27]. 

 

Application of the Developed phenomenological model 

This section presents the applications of the developed predictive tool along with the proposed phenomenological model. Two-

step verification was performed to demonstrate the efficiency of the developed predictive tool and also verify its accuracy. To 

this goal, a random factor combination, generated using a normal distribution, was considered. For the randomly generated 

factor combination, the backbone curve was developed using the predictive tool. The developed backbone curve was then used 

to create an OpenSees model. Additionally, an ANSYS model is developed based on the factor combinations to perform the 

two-step verification. A cyclic load is applied to both ANSYS and OpenSees models. Figure 3 shows the moment-rotation 

response of developed ANSYS and OpenSees models as well as the predicted backbone curve obtained from the predictive 

tool. As shown in Figure 3, ANSYS, OpenSees, and the backbone curve are in good agreement. It should be noted that the 

runtime for the OpenSees model, generated using the developed predictive tool, was about 3 minutes, while ANSYS runtime 

was about 7 hours with the same computer. Further details and discussions can be found in [27]. 

 

(a)         (b) 

Figure 3. The developed phenomenological model: (a) Schematic view; (b) Two level verifications. 
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CONCLUSIONS 

This paper presented the application of artificial intelligence in structural analyses to develop high-fidelity finite element (FE) 

models while reducing computational time. To do so, an existing dataset for the backbone curve parameters of the Shape 

Memory Alloy (SMA) based extended endplate connections was combined with experimental test results. The enriched dataset 

was used to train different algorithms, including Artificial Neural Networks (ANN), decision trees (DT), random forest (RF), 

extreme gradient boosted trees (ExGBT), light gradient boosted trees (LGBT), TensorFlow deep learning (TFDL), and Keras 

deep residual neural network (KDP). Among the trained algorithms, ANNs were selected to create a graphical user interface 

(GUI) predictive tool to predict the backbone curve parameters of the SMA-based beam-to-column connections. A 

computationally efficient FE model was generated for the bolted SMA-based connections using a phenomenological model 

that was fed by the developed GUI. It was shown that accurate results could be obtained with less computational effort using 

the proposed predictive tool. The following conclusions were drawn from this study: 

 

• The proposed predictive tool is capable of predicting the moment-rotation of the SMA-based extended endplate 

connections with acceptable accuracy. This accuracy was confirmed by close-to-one coefficients of determination 

from the comparison between actual and predicted values, ranging between 0.91 to 0.99 for ANNs. 

 

• Among ML algorithms that were trained for the dataset, ANN, ExGBT, and KDP algorithms hold the top three 

rankings in terms of performance, with ANN being the highest, followed by ExGBT and KDP. Meanwhile, TFDL and 

DT algorithms show the weakest performance among all.  

 

• The freely available MATLAB predictive tool is an efficient tool for modeling SMA-based endplate connections. 

Proper use of the developed predictive tool would be an efficient way to eliminate the need for detailed finite element 

analysis of SMA-based extended endplate connections. 
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