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ABSTRACT

Steel beam-column connections with shape memory alloy (SMA) bolts provide self-centering behavior and eliminate
permanent deformations in earthquake-resilient steel moment frames. This paper presents the development and frame modeling
application of a freely available Graphical User Interface (GUI) for predicting the cyclic and self-centering response of extended
endplate steel connections with superelastic SMA bolts. A database of moment-rotation response is created from the results of
seventy-two 3D finite-element simulations and seven experimentally tested specimens. The study trains different machine
learning algorithms, including Artificial Neural Networks (ANN), Decision Tree (DT), Random Forest (RF), Extreme Gradient
Boosted Trees (EXGBT), Light Gradient Boosted Trees (LGBT), TensorFlow Deep Learning (TFDL), and Keras Deep Residual
Neural Network (KDP). The accuracy of the algorithms is compared in terms of two performance metrics, root mean square
error (RMSE) and coefficient of determination (R?). The trained ANNSs, which show the highest accuracy with an R? ranging
from 0.92 to 0.99, are chosen to develop a Graphical User Interface (GUI). To demonstrate the application of the developed
predictive tool, a phenomenological model of moment frames with SMA connections is developed and verified in OpenSees
based on experimental test results. A two-stage validation study is performed to assess the accuracy of the proposed
phenomenological model. The validation study uses the predictive tool to develop the phenomenological model for SMA-based
beam-to-column connection. It is shown that the results of the predictive tool, the phenomenological model, and the 3D finite-
element models in ANSYS are in line with each other with high accuracy. By using the developed tool, the prediction of the
cyclic and self-centering response of a typical SMA connection can be performed rapidly — taking three minutes in OpenSees
compared to seven hours in ANSYS.

Keywords: Machine learning, Earthquake resilience, Shape memory alloy (SMA), Self-centering endplate connection,
Artificial neural networks.

INTRODUCTION

Shape Memory Alloys (SMA) are metallic alloys with two favorable mechanical behavior: 1) undergoing large deformations;
2) recovering their original shape upon unloading or heating with minimal residual deformation. The exposure of the SMA
materials to stress or temperature results in solid-to-solid phase transformations, which in turn can result in shape recovery.
The unique behavior of the SMA materials, i.e., deformation capacity and shape recovery, convinced many researchers to use
SMA materials in structural systems to provide a self-centering behavior ([1-4], among others). Self-centering structures are
defined as structures that have the capability to return to their plumb position following lateral loading, such as earthquake
loading.

While there exist different applications of the SMA materials in structural systems, bolted SMA-based beam-to-column
connections have shown effective self-centering behavior (e.g., [5-8]). Leon et al. [10] are among the earliest researchers who
proposed the application of SMA materials in beam-to-column connections. In their study, two full-scale connections were
tested according to the SAC testing protocol. Their results showed that the connections exhibit stable and repeatable hysteresis
loops for rotations up to 4%. In a study by Ocel et al. [5], following testing two-full scale connections with large SMA tendons,
the SMA tendons were heated to remove residual deformations, and then the connections were subjected to loading. The

Paper ID 245 - 1


https://en.wikipedia.org/wiki/University_of_Canterbury
mailto:s.moradi@torontomu.ca

Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023

connections exhibited repeatable and stable hysteretic behavior while up to 76% of the residual deformations were removed by
initiating the Shape Memory Effect of the SMA tendons, i.e., by heating the SMA tendons. Ma et al. [11,12] proposed proof-
of-concept superelastic SMA-based extended endplate connections in which the high-strength bolts were replaced with
superelastic SMA bolts. Based on the results of their numerical studies, SMA-based extended endplate connections exhibited
a self-centering behavior while a moderate level of energy dissipation capacity was observed in the proposed connections.
Following the Ma et al. studies on the proof-of-concept SMA-based connections, Fang et al. [6] performed eight experimental
tests, including seven SMA-based and one regular extended endplate connection. In the tested specimens, superelastic SMA
bolts were used in the extended endplate connections. Their results confirmed that while in the conventional extended endplate
connections, the ductility and energy dissipations were accommodated by deformations in the beam, column, and endplate, in
the SMA-based extended endplate connections, the ductility and energy dissipations were provided by SMA bolts; therefore,
other parts of the beam-to-column connections, including endplate, beam, and column were within their elastic range. Confining
the plastic deformations in the SMA bolts results in developing a superelastic hinge in the SMA-based extended endplate
connections that reduces the repairs in structural members and, consequently, downtime of the building after a seismic event.
The tested specimens by Fang et al. [6] showed a great recentering capability with a moderate energy dissipations capacity.
While there exist other research efforts aimed at examining the seismic behavior of the extended endplate connections with
SMA bolts ([9,13,14], among others), this research intends to characterize the seismic properties of the SMA-based extended
endplate connections using Machine Learning (ML) algorithms particularly Artificial Neural Networks (ANN).

SCOPE AND METHODOLOGY

In this study, the database developed by the authors [15], which contains seventy-two detailed finite element simulations, along
with seven experimentally tested specimens were used to propose a predictive tool for the backbone curve parameters of the
SMA-based extended endplate connections. Schematic views of the bolted SMA-based beam-to-column connections and also
developed backbone curve are shown in Figure 1. The considered backbone curve herein can be associated with the generalized
backbone curve of the ASCE 41-17 [16]. As shown in Figure 1, from A to B, the connection has an elastic behavior. After point
B, the SMA materials enter their forward transformation phase. At point C, the outmost SMA bolts reach their fracture strain,
which in turn results in a drastic reduction in the moment capacity of the connections (line CD in Figure 1). Following point C,
the loading continues to achieve the fracture strain in the second row of the SMA bolts. Post-yield deformation capacity of the

connections is defined with parameters a and b (Figure 1b). In fact, a and b are post-yield rotations up to 8., and &, respectively.
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Figure 1. Schematic view of: (a) the bolted SMA-based beam-to-column connections; (b) proposed backbone curve.

In this study, it is assumed that the SMA materials will fracture upon reaching a strain level of &, [15] that is formulated as
follows:
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where ¢, is the maximum transformation strain of the SMA bolts, o, is the martensite finish stress, and E,,,, stands for Young
Modulus of elasticity of the SMA materials.

Based on previous studies by the authors [8,9], ten factors were identified as influential factors on the seismic response of the
backbone curves, which are listed in Table 1. Using these significant factors along with their ranges, a dataset of seventy-two
factor combinations was developed using the Response Surface Methodology (RSM). Factor combinations used in this study
can be found elsewhere [15]. For each factor combination, two finite element models are developed in ANSYS mechanical
APDL [17]. In the first finite element model, the connection is loaded up to 0.07 rad rotation to capture the rotation at which
the outmost bolts achieve their fracture strain as defined in Eq. 1. In the second finite element model, the first row of the SMA
bolts is removed, and then the connection is loaded up to 0.1 rad rotation to capture the rotation at which the second row of the
SMA bolts are fractured. A backbone curve similar to Figure 1 is obtained for each factor combination by assembling the
backbone curves achieved from two finite element simulations. Further details on developing the dataset can be found in Ref.
[15].

Table 1. Input factors and ranges.

Factor Symbol Minimum Maximum Unit
1 Martensite start stress OMs 280 380 MPa
2 Martensite finish stress omf 410 590 MPa
3 Austenite start stress Ohs 170 250 MPa
4 Austenite finish stress OAf 70 138 MPa
5 Maximum transformation strain eL 0.07 0.13 -
6 Bolt pretension strain Ept 0.005 0.015 -
7 Bolt length Lboit 300 350 mm
8 Bolt diameter Dhuolt 10 25 mm
9 Beam depth Npeam 150 610 mm
10 Beam length Ly 1500 4500 mm

MACHINE LEARNING FOR PREDICTING BACKBONE CURVE PARAMETERS

In this study, Artificial Neural Networks (ANN), Decision Tree (DT), Random Forest (RF), Extreme Gradient Boosted Trees
(ExGBT), Light Gradient Boosted Trees (LGBT), TensorFlow Deep Learning (TFDL), and Keras Deep Residual Neural
Network (KDP) were trained to predict the backbone curve parameters of the SMA-based extended endplate connections. Ten
influential design parameters, as listed Table 1, are the inputs for the algorithms. For each backbone curve parameter, including

0, 0,0, M, M, and M,, a separate algorithm is trained. Finally, a single predictive model for backbone curve parameters
is developed using trained ANNs, which gives us the backbone curve of the SMA-based extended endplate connections upon
inserting ten input parameters.

Artificial Neural Networks

ANN are computational models that contain hundreds of single units, artificial neurons, connected with coefficients (weights)
in which the human’s brain working principles are emulated to conduct learning and then the prediction. ANNSs can be trained
to model a complex problem with many parameters where the training process is performed using proper exemplars [18]. ANN
consists of interconnected neurons that are processing elements having similar characteristics, such as inputs, synaptic strength,
activation outputs, and bias [19]. The processing units, i.e., input, hidden, and output units, are composed of a layered structure
that carries the weights of the network. The training process of a network is associated with adjusting the weights in a network
so that the optimum weight space of the network is achieved.

ANNSs are used to determine the nonlinear relationship between the input and output parameters of the backbone curve. In this
study, a multilayer feedforward backward propagation of errors, i.e., backpropagation, the network is used. The reason for
which the backpropagation network is selected is its capability to find complex relationships between inputs and outputs. In
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the backpropagation networks, the output errors are propagated back using the same connections used in the feedforward
mechanism by the derivation of the feedforward transfer function [20,21]. The neurons are placed in three separate layers,
including the input layer, hidden layer, and output layer. The input layer has ten neurons, reflecting ten design parameters.
Neurons in the input layer pass the scaled input data to the hidden layer using weights. The hidden layer has different neurons
for each response variable, obtained using hit and trial methods to have maximum accuracy. The output layer is comprised of
a single neuron that represents the backbone curve parameter. In this study, the tangent sigmoid transfer (tansig), which
generates an output between 0 and 1, is used as an activation function for the hidden layer, whereas pure linear (purelin)
functions are used as activation functions at the output layer. It is worth mentioning that the goal of using nonlinear transform
functions, e.g., the tangent sigmoid transfer, is to provide the network with the capability of learning the nonlinear behavior
between input and output layers.

The design matrix, which was developed using RSM, is used as the input matrix while the finite element results were used as
outputs. Multilayer perceptron architecture of feedforward ANN was developed. The developed design matrix using RSM
contained seventy-two factor combinations from which fifty factor combinations, i.e., 70% of the dataset were used to train the
network, eleven factor combinations (15% of the dataset) were used for validation, and the last eleven factor combinations
(15% of the entire dataset) were used for the sake of testing the network. The performance of the networks was evaluated using
the coefficient of determination (R%) and root mean square error (RMSE). Note that the coefficient of correlation estimates the
relationship between model output and actual values.

Data Preprocessing

The input data for ML algorithms were normalized to lie within a range of 0 to 1. The reason for which the input data has been
normalized was to prevent the saturation region of the log-sigmoid activation function. The saturation problem can result in a
low learning rate of the networks [22]. Eq. 1 was used to normalize the inputs of neural networks.

X = Xin
P = @

Xmax ~ Xmin

where ¢ is the normalized data, and x indicates the rough data.

ML ALGORITHMS’ RESULTS

This section summarizes the results of the trained ML algorithms. For each backbone curve parameter, a separate algorithm
was trained. The results of the trained algorithms are listed in Table 2. The coefficient of determination, R?, and root-mean-
square-error, RMSE, were considered as performance metrics to compare the performance of the trained ML algorithms.

As per Table 2, ANN outperforms other algorithms. It should be noted that except for ANN, other algorithms” hyperparameters
were assigned according to the framework by suggested by Naser et al. [23]. Therefore, it might be a biased comparison if we
compare the performance of ANN with other ML algorithms. Excluding ANNs and comparing the performance of other
algorithms, it can be observed that no single algorithm outperforms other algorithms for all backbone curve parameters. By
taking into account the overall performance of the algorithms, however, EXGBT and KDP are the first and second best-ranked
algorithms, while TFDL and DT have the poorest performance.

GRAPHICAL USER INTERFACE PREDICTIVE TOOL

The trained neural networks were used to develop a predictive tool for the response prediction of SMA-based extended endplate
connections. The developed tool will be helpful to eliminate the need for a detailed finite element modeling of the connections
and consequently reduce computational expenses. With this goal, the trained ANNs were used to develop a Graphical User
Interface (GUI) to predict the backbone curve and self-centering response of SMA-based extended endplate connections
interactively. The developed predictive tool is freely available online [24]. As shown in Figure 2, ten significant parameters are
required to be entered into the developed tool. An unloading path is also included to facilitate implementing the proposed
response curve in other software programs, such as OpenSees (using SelfCentering material, for example). As shown in Figure
2, two switch keys are provided in the developed tool by which the return path and the moment rotation values at different
points can be shown.
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Table 2. Results of the trained ML algorithms using the developed database.

DT RF ExGBT LGBT TFDL KDP ANN
Parameter metric
Train Test Train  Test  Train  Test Train Test Train Test  Train Test Train  Test
R? 1.00 0.79 0.89 0.78 1.00 088 0.92 0.86 0.86 068 079 052 093 091
68 RMSE 0.00 0.0010 0.0008 0.0014 0.0001 0.0010 0.0007 0.0011 0.0010 0.0016 0.0012 0.0015 0.0007 0.0010
R? 1.00 0.55 0.87 0.74 1.00 082 0.94 0.91 0.61 042 093 0.89 098 091
& RMSE 0.0006 0.0077 0.0041 0.0073 0.0007 0.0045 0.0031 0.0030 0.0087 0.0090 0.0030 0.0040 0.0020 0.0040
R? 1.00 0.76 0.91 0.91 1.00 0.86 0.95 0.93 0.64 0.28 093 092 099 0.96
& RMSE 0.00 0.010 0.005 0.005 0.00 0.006 0.004 0.004 0.008 0.018 0.005 0.004 0.001 0.004
R? 1.00 0.98 097 092 1.00 099 0.98 0.97 0.92 090 100 0.99 0.99 0.99
e RMSE 0 334 355 605 1.2 23.3 32.3 42.1 58.4 70.3 124 172 149 170
R? 1.00 0.94 0.98 0.96 1.00 099 0.98 0.98 0.87 071 100 0.99 100 0.99
e RMSE 0.37 729 37.7 56.6 1.0 268 431 41.0 1025 1423 83 172 63 264
R? 1.00 0.95 097 0.94 1.00 097 0.97 0.94 0.97 091 100 1.00 100 0.9
e RMSE 1 36.0 251 322 0.7 290 236 45.2 25.6 55.0 6.0 9.3 9.0 9.1
R? 1.00 0.90 091 0.84 1.00 090 0.92 0.91 0.73 062 091 0.89 097 097
g RMSE 0.00 0.03 0.03  0.05 0.0 0.03  0.03 0.03 0.06 0.06 040 030 0.02 0.02
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Fig_ure 2. The developed MATLAB tool for predicting the backbone curve of SMA-based endplate connections.
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DEVELOPING HIGH-FIDELITY FE MODELS USING THE PROPOSED PREDICTIVE TOOL

In this section, the application of the developed predictive tool for developing computationally effective FE models of the
beam-to-column connections is illustrated.

The proposed backbone curve was used to develop a phenomenological model for SMA-based endplate connections in
OpenSees [25]. Self-Centering, Pinching4, Steel01 materials in OpenSees acting in parallel were considered to model beam-
to-column connections. A rotational spring with a parallel material, including the Self-Centering, Pinching4, and Steel01
materials, was considered to simulate the self-centering response of the bolted SMA-based beam-to-column connections. Using
an iterative process, the percentage contribution of the Self-Centering, Pinching4, and Steel01 were considered as 0.9, 0.05,
and 0.05, respectively. In the proposed phenomenological model, the beam and column are modeled using elastic beam-column
elements [26]. The verification of the presented phenomenological against experimental test data can be found elsewhere [27].

Application of the Developed phenomenological model

This section presents the applications of the developed predictive tool along with the proposed phenomenological model. Two-
step verification was performed to demonstrate the efficiency of the developed predictive tool and also verify its accuracy. To
this goal, a random factor combination, generated using a normal distribution, was considered. For the randomly generated
factor combination, the backbone curve was developed using the predictive tool. The developed backbone curve was then used
to create an OpenSees model. Additionally, an ANSYS model is developed based on the factor combinations to perform the
two-step verification. A cyclic load is applied to both ANSYS and OpenSees models. Figure 3 shows the moment-rotation
response of developed ANSYS and OpenSees models as well as the predicted backbone curve obtained from the predictive
tool. As shown in Figure 3, ANSYS, OpenSees, and the backbone curve are in good agreement. It should be noted that the
runtime for the OpenSees model, generated using the developed predictive tool, was about 3 minutes, while ANSYS runtime
was about 7 hours with the same computer. Further details and discussions can be found in [27].
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Figure 3. The developed phenomenological model: (a) Schematic view; (b) Two level verifications.
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CONCLUSIONS

This paper presented the application of artificial intelligence in structural analyses to develop high-fidelity finite element (FE)
models while reducing computational time. To do so, an existing dataset for the backbone curve parameters of the Shape
Memory Alloy (SMA) based extended endplate connections was combined with experimental test results. The enriched dataset
was used to train different algorithms, including Artificial Neural Networks (ANN), decision trees (DT), random forest (RF),
extreme gradient boosted trees (ExGBT), light gradient boosted trees (LGBT), TensorFlow deep learning (TFDL), and Keras
deep residual neural network (KDP). Among the trained algorithms, ANNs were selected to create a graphical user interface
(GUI) predictive tool to predict the backbone curve parameters of the SMA-based beam-to-column connections. A
computationally efficient FE model was generated for the bolted SMA-based connections using a phenomenological model
that was fed by the developed GUI. It was shown that accurate results could be obtained with less computational effort using
the proposed predictive tool. The following conclusions were drawn from this study:

e The proposed predictive tool is capable of predicting the moment-rotation of the SMA-based extended endplate
connections with acceptable accuracy. This accuracy was confirmed by close-to-one coefficients of determination
from the comparison between actual and predicted values, ranging between 0.91 to 0.99 for ANNSs.

e Among ML algorithms that were trained for the dataset, ANN, EXGBT, and KDP algorithms hold the top three
rankings in terms of performance, with ANN being the highest, followed by ExGBT and KDP. Meanwhile, TFDL and
DT algorithms show the weakest performance among all.

e The freely available MATLAB predictive tool is an efficient tool for modeling SMA-based endplate connections.
Proper use of the developed predictive tool would be an efficient way to eliminate the need for detailed finite element
analysis of SMA-based extended endplate connections.
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