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ABSTRACT 

Seismic engineering requires to perform numerical simulations mixing phenomena having different size scales in length but 
also in time. For example, soil-structure interaction problems may require to assemble subdomains with very different size 
scales (soil, foundation and structure). Other non-smooth dynamic problems such as building poundings, rocking elements may 
present impacts (short time scale) during an earthquake (long time scale). Then, in order to optimise the simulations, it can be 
interesting to use different time integrators and spatial coupling of domains with possibly different time steps. In this work, a 
coupling algorithm based on a velocity continuity at the interface between two subdomains is proposed. It can take into account 
both heterogeneous (different time schemes) and asynchronous (different time steps) time integrations (HATI) in an implicit 
way. It is not intrusive in the finite element code because it can be treated as an interface element. This algorithm allows to 
compute efficiently the tangent algorithmic operator to keep a quadratic convergence of the simulations. Two dynamic non 
linear case studies are presented in this work: (1) a building pounding simulation where the part of the structure experiencing 
the impact is solved with the Euler+𝜃 time integration scheme linked to the other part solved with a Newmark time integration 
scheme, and (2): a 2D dynamic three points bending test with J2-plasticity linking 2 subdomains (with different time schemes 
and time steps). All the simulations show that there is no energy dissipation at the interface and that results from this algorithm 
overlap very closely the reference solutions. The algorithm is therefore also generally suitable for the use of macro-elements 
with different internal resolution time schemes from the global solver. 

Keywords: Primal subdomain coupling based on velocity continuity, Asynchronous, Time integration schemes, Implicit, Non-
linear analysis. 

INTRODUCTION 

This work aims at coupling finite element subdomains which are not necessary treated with the same time integration schemes. 
Indeed, it can be interesting to consider different time integration schemes in each subdomains to account for a particular 
physics. For instance, for impacts problems, the adjacent zone to the impact and the rest of the structure can be solved with two 
different intergration schemes to account for, on the hand side, complex phenomena at the impact scale and on the other side, 
catch the overall response of the structure in the same modelling approach. More generally, macro-elements with internal 
degrees of freedom (using an internal dynamic equilibrium) can be considered. In the past years, different techniques have been 
developed, based on different approaches : explicit/implicit methods,[1-2], implicit/implicit through interpolation and 
extrapolation techniques at the interface [3], or the so-called dual method (FETI) which involves Lagrange multipliers by 
considering two subdomains treated at the same numerical level [4-8].  

In this work, a primal method [9] is proposed which considers a subdomain 1 (master or global subdomain) calling a subdomain 
2 (as a macro-element with a sub-structured resolution). Some previous work considers acceleration continuity at the interface 
for explicit/explicit couplings [10-11]. In this work the proposed coupling make an assumption of velocity continuity at the 
interface and allows to link subdomains with an implicit resolution. However, in order to compute implicit problems and to 
keep a quadratic convergence, this requires the correct evaluation of the algorithmic tangent operator, which will be detailed in 
the following (and in [12]). Finally, two non linear dynamic numerical applications are presented. The first one simulate the 
effects of building pounding under earthquake loading. It allows to take into account an impact in a specific zone of a structure 



Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023 

2 

 

(described by a domain) using a complementarity method combined with an Euler integration scheme while the other part of 
the structure (the second domain) is solved classicaly with a Newmark time integration scheme. The second numerical 
application concerns the dynamic analysis of an elastoplastic beam subjected to an instantaneous force  (i.e. problem of loss of 
bearing capacity). A zone of the beam is then solved with an integration scheme whose time step is m=5 times finer than the 
rest of the structure. 

PRIMAL SUBDOMAIN AND SUB-STRUCTURING METHOD DECOMPOSITIONS 

The objective is to kinematically link two subdomains (Figure 1) respecting their dynamic equilibrium (more detailed in [12]). 
Subdomain 1 can be seen as master part while subdomain 2 is a called by subdomain 1 as a macro-element with internal degrees 
of freedom and internal dynamic equilibirum. The links at the interface can be seen as boundary conditions imposed to 
subdomain 2 which in turn generate resisting forces applied to subdomain 1. To achieve quadratic convergence, it is necessary 
that subdomain 2 also returns a condensed tangent algorithmic operator at the interface with subdomain 1. When the problem 
is static, this type of usual static condensation is called Schur complement evaluation. In the dynamic case, with different 
integration schemes (heterogenous) and different time steps (asynchronous), this condensation is different and is presented 
below. 

 
Figure 1. Representation of the decomposition of the subdomains with links at the interface. The kinematic applied at the 

interface (displacement, velocity and acceleration) is imposed by considering continuity of the velocities and generate 
resisting forces on subdomain 1 as seen in detailed in [12]. 

The leading idea to connect both subdomains is to impose a specific kinematic constraint at their interface in order to calculate 
the resisting force. In this method, and as it has been proposed for numerous FETI methods [4],  it is the velocity which is 
chosen to be continous at the interface of both subdomains at each time step. It means the velocity is exacly the same at the 
interface scale for both subdomains.  

In a very general way, the integration schemes allow to link displacements, velocities and possibly accelerations by means of 
Eq. (1) with particular parameters depending on integration schemes formulation (Newmark’s family schemes, or Euler+𝜃 
scheme or Central Differences scheme recalled in Table 1).  
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FIGURE 6 Representation of the links between kinematics at the interface of the subdomains (u1
i+1 and u

2
i+1) and inside the

subdomain 2 (u2(k)
i+1) for the internal resolution, and the resisting forces (F 2

i+1) coming from the subdomain 2 at the interface ant
to be returned to subdomain 1

g is maintained for global resisting force (interface and internal nodes), and uppercase letters are used for the global kinematic
(displacements, velocities, accelerations).

By imposing the kinematic relationship at the interface (u 2

i+1) that stands for displacements, the global displacement vector
collecting all the degrees fo freedom of subdomain 2 reads:
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The internal dynamic equation given by the global resistant force is (depending on the displacements, velocities and accel-
erations of all the nodes of the subdomain 2 ): F g 2
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U
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. For implicit/implicit couplings, this latter can
be linearised (or at least evaluated roughly inside the resolution of the subdomain 2 , because it is the one used in the dynamic
equilibrium using a Newton Raphson procedure of subdomain 2 ).

Thus a linearisation (or an approximation used to solve the equilibrium of the 2 domain in the following way) of the global
resisting force can always be performed as:
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From now, using the time scheme discretisation of the subdomain 2 which is valid for both internal degrees of freedom as
for the degrees of freedom at the interface between the subdomains, we get:
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and thus di�erentiating these expressions (knowing that the quantities at time step i steps are constant, which will not be the
case for multi-time stepping) we get:
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• impose a kinematic relationship on the displacement, or velocity (or acceleration) at the interface;

• compute the adequate resisting force that has to be returned from subdomain 2 to subdomain 1 ;

• derive the algorithmic tangent consistent operator with a technique of static condensation.

3 PRINCIPLE OF INTEGRATION SCHEME COUPLING OVER ONE TIME STEP

3.1 Introduction
Let 1 a subdomain with a given time scheme and 2 another subdomain called by 1 with its time scheme.

Whether it is a Newmark scheme or explicit with centred di�erence (or even an Euler+✓ scheme), the following relationships
between displacements, velocities and accelerations (only for second order time-scheme) at time step i + 1 can be written as a
function of quantities at previous time step i.

Thus, the time scheme 1 and 2 read:
T
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The idea of the coupling between the 2 subdomains by duplicating the nodes at the interface is to create a kinematic link.
Here, the continuity is made on the velocities (for example and as it is proposed in13). But a similar demonstration could be
made by imposing the continuity of displacements or accelerations. Then the displacements and accelerations can be calculated
within subdomain 2 so that this continuity of velocity is enforced.

Thus, imposing the continuity of velocities at the interface lead to get not the same displacement and acceleration at the
interface of the 2 subdomains. This is the price to pay between the 2 subdomains to keep this continuity of the velocity. Thus it
is like a kinematic constraint in velocity (strictly fulfilled) is created but constraints in displacements and accelerations that are
not strictly fulfilled at the interface.

1 2 1

kinematic
relationship

kinematic
relationship

+ for all nodes at the interface
and for every time steps:
rigid links: v 1

i+1 = v
2

i+1
and links depending on time:
u

2 = f (u 1 ) et a 2 = h(u 1 )
where f and gh are 2 functions

from the time scheme 2 .

FIGURE 5 Illustration of the kinematic links between 2 sub-domains and the fact that even if velocities are considered as
continuous, the displacements and accelerations are discontinuous at the interfaces.

Imposing velocities between subdomains implies the following relationship:
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From this last equation of continuity, the displacement to be imposed at the interface of the subdomains has to be:
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The same can be made in order to get the accelerations:
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Table 1. Parameters for Newmark, Euler+𝜃 and central differences time schemes 

 
 

If the velocity is imposed to be continous at the interface, it is not possible to impose equally the displacements or accelerations 
at the interface. In other words, imposing velocity continuity means finding a relation between displacements on the one hand 
and accelerations on the other hand at the interface which involve the parameters of the 2 integration schemes. An example of 
this kind of link is given for the displacement in Eq. (2).  

   (2) 

Finally the kinematics in terms of velocity continuity and the corrected displacement and accelerations are imposed at the 
interface. In addition, the condensed algorithmic tangent operator at the interface will also take into account the parameters of 
the two time integration schemes as it will be detailed hereafter. 

Coupling of two subdomains with different time schemes having the same time step   

When the two subdomains use different time schemes and with the same time step, the computation of the resisting forces of 
the subdomain 2 on the subdomain 1 at the interface can be seen as the results of simple boundary conditions applied to 
subdomain 2. The resisting force defined on all the nodes of the subdomain 2 (interface and internal nodes) can be written as 
Eq. (3) (this is the dynamic equlibrium, written in a general non linear way of subdomain 2): 

  (3) 

Where 𝑼!"#
(%) , 𝑽!"#

(%) , 𝑨!"#
(%)  concatenate the degrees of freedom at the boundary (b) and the internal degrees of freedom (r) as 

defined hereafter for the displacement. In the following, the internal degrees of freedom (r) are denoted finally with a (k) 
upperscript to keep in mind the internal solution of subdomain (2) can be non linear and evaluated over few iterations (k) with 
an incremental procedure (as Newton Raphson). For the boundary degrees of freedom (b), as the kinematic is imposed 
throughout the time step, the notation contains only the time step (i+1): 

 

(4) 

The linearization of the force can then be written as (where 𝑴,𝑪,𝑲 are the linearized operators defined in a general way here 
which are due to the constitutive mechanisms of the subdomain 2):  

(5) 

This last equation can also be rewritten in block matrix form to understand the sub-structuration of the method and showing 
the concatenation of the degrees of freedom and resisting force at the interface (block equation 1), as well as the internal degrees 
of freedom and internal force (block Eq. (2)): 

 

(6) 

 

Using the time schemes parameters, the global equivalant stiffness matrix of subdomain 2 can be obtained as in Eq. (7) in 
relation with the displacement field for example using Eq. (2): 
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3.2 Examples of values of these coe�cients for di�erent time scheme:
The table 1 gives an overview of the values of the coe�cients used to discretise few time integrations.
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TABLE 1 Values of the parameters for time integration scheme families.

3.3 Resisting force at the interface between the subdomains: equilibirum equations using virtual
power principle VPP*
The VPP* applied with a virtual field proportional to the velocities allows the projection on a continuous kinematic field at the
interface.

Let’s consider the following resisting forces at the boundary of two subdomains (formulated in displacements):
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, the resisting internal force coming from subdomain 2 at the nodes on the interface.

Then, the VPP* reads (where f , g, and h are the functions depending of the time schemes):
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On the second equation of 26 the internal kinematic of subdomain 1 can be easily written from velocities and accelerations
depending on the displacement u 1

i+1.
From the fact that the continuity of velocities is enforced v

1
<

i+1 = v
2
<

i+1, it is not necessary to modify the internal resisting force
from domain 2 to 1 .

3.4 Algorithmic tangent operator needed when using an implicit scheme
In order to keep quadratic convergence, a time connection factor between the time integration schemes is needed in order to
calculate exactly the algorithmic tangent operator.

The demonstration is then first proposed in the case where the time scheme of the subdomain 1 is written in displacement, then
the derivatives of the internal forces must be made with respect to the displacement. However, the same kind of demonstration
can be made with time schemes written in velocities (or acceleration) by adapting the derivation.

In the following subsections, a first simple demonstration is done only valid for mono-time stepping (section 3.4.1) while a
second demonstration will give basics of more powerful derivation for multi-time stepping algorithms (section 3.4.2) that will
be treated in section 4.
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• impose a kinematic relationship on the displacement, or velocity (or acceleration) at the interface;
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• derive the algorithmic tangent consistent operator with a technique of static condensation.
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3.1 Introduction
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The idea of the coupling between the 2 subdomains by duplicating the nodes at the interface is to create a kinematic link.
Here, the continuity is made on the velocities (for example and as it is proposed in13). But a similar demonstration could be
made by imposing the continuity of displacements or accelerations. Then the displacements and accelerations can be calculated
within subdomain 2 so that this continuity of velocity is enforced.

Thus, imposing the continuity of velocities at the interface lead to get not the same displacement and acceleration at the
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FIGURE 5 Illustration of the kinematic links between 2 sub-domains and the fact that even if velocities are considered as
continuous, the displacements and accelerations are discontinuous at the interfaces.
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From this last equation of continuity, the displacement to be imposed at the interface of the subdomains has to be:
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By imposing the kinematic relationship at the interface (u 2
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collecting all the degrees fo freedom of subdomain 2 reads:
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The internal dynamic equation given by the global resistant force is (depending on the displacements, velocities and accel-
erations of all the nodes of the subdomain 2 ): F g 2
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equilibrium using a Newton Raphson procedure of subdomain 2 ).

Thus a linearisation (or an approximation used to solve the equilibrium of the 2 domain in the following way) of the global
resisting force can always be performed as:
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From now, using the time scheme discretisation of the subdomain 2 which is valid for both internal degrees of freedom as
for the degrees of freedom at the interface between the subdomains, we get:
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and thus di�erentiating these expressions (knowing that the quantities at time step i steps are constant, which will not be the
case for multi-time stepping) we get:
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g is maintained for global resisting force (interface and internal nodes), and uppercase letters are used for the global kinematic
(displacements, velocities, accelerations).

By imposing the kinematic relationship at the interface (u 2

i+1) that stands for displacements, the global displacement vector
collecting all the degrees fo freedom of subdomain 2 reads:
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The internal dynamic equation given by the global resistant force is (depending on the displacements, velocities and accel-
erations of all the nodes of the subdomain 2 ): F g 2
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. For implicit/implicit couplings, this latter can
be linearised (or at least evaluated roughly inside the resolution of the subdomain 2 , because it is the one used in the dynamic
equilibrium using a Newton Raphson procedure of subdomain 2 ).

Thus a linearisation (or an approximation used to solve the equilibrium of the 2 domain in the following way) of the global
resisting force can always be performed as:
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Note:
All the matrices can be written by sub-structuring internal and interface degrees of freedom, and at convergence, �F 2

(k)

i+1 vanishes
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From now, using the time scheme discretisation of the subdomain 2 which is valid for both internal degrees of freedom as
for the degrees of freedom at the interface between the subdomains, we get:
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and thus di�erentiating these expressions (knowing that the quantities at time step i steps are constant, which will not be the
case for multi-time stepping) we get:
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The internal dynamic equation given by the global resistant force is (depending on the displacements, velocities and accel-
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The internal dynamic equation given by the global resistant force is (depending on the displacements, velocities and accel-
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Thus a linearisation (or an approximation used to solve the equilibrium of the 2 domain in the following way) of the global
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Which can be rewritten as: 

 

(8) 

 

At convergence, the internal forces (on internal degrees of freedom r) vanish:  

(9) 

This last equation allows to evaluate the schur complement (static condensation of the 2nd line into the 1st line of Eq. (8)). The 
relationship between the increment of forces at the interface and the increment of displacement imposed by the subdomain 1 
can be then calculated and provides the algorithmic tangent operator (which depends on time schemes parameters of both 
subdomains): 

(10) 

 

Coupling of two subdomains with different time schemes and with different time steps 

If the time step of subdomain 2 is smaller (time step 𝑑𝑡%) than the one of subdomain 1 (time step 𝑑𝑡# = 𝑚𝑑𝑡%, with 𝑚 ∈ 𝑁"), 
a kinematic assumption must be imposed at the interface during the whole coarse time step (𝑑𝑡#) using a parameter 
𝜆'"#	increasing incrementally troughout the coarse time step i+1. Classicaly in FETI methods, the velocity in subdomain 2 at 
the interface is imposed to evolve linearly between the beginning and the end of the coarse time step as in Eq. (11) and Figure 
2: 

(11) 

 
Figure 2. Finer time step decomposition of subdomain 2 into the coarse time step of subdomain 1 

For every fine time step 𝑝 + 1 between 𝑖 and 𝑖 + 1, the global resisting force (for all nodes) is evaluated in subdomain 2. 

 

(12) 

 

The objective is now to calculate the differentation of the force at the interface 𝑭'"#
(%)  with the increment of displacement at the 

interface imposed at the interface for each fine time step 𝑑𝑡% (Eq. (13)).  

 

(13) 

 

This operator evaluated when 𝑝 + 1	corresponds to 𝑖 + 1 (i.e. at the end of the coarse step) will be the algoritmnic tangent 
operator. In order to calculate exactly this tangent operator, the resisting force vector must be differentiated (as it has been done 
in the previous section), but now taking into account that the variables of the previous substep p are no longer constants and 
must be differentiated too. It leads to Eq. (14): 
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And then, the classical relationship is obtained for the algorithmic operator at the global level:
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In this previous relationship, ÉK is the global algorithmic tangent operator of subdomain 2 (with all the degrees of freedom
of the subdomain (internal degrees of freedom and at the interface).
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At internal convergence of the subdomain 2 , the residual is 0 and the internal forces vanishes then: F 2
(k)

i+1 = *R 2
(k)

i+1 = 0, so

that: �F 2
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i+1 = 0.

Thus a simple static condensation of the 2nd equation of this system can be operated on the first one to obtain:
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and give in the first equation:
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And then:
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In the end, this demonstration shows the internal sti�ness matrix of the subdomain 2 must be multiplied by the time connection
factor between the both time schemes: C 2

*1

C
1 .

The same demonstration can be made if the principal variable of the subdomains are the velocities or the accelerations.

4 COUPLING BETWEEN 2 SUBDOMAINS WITH DIFFERENT TIME SCHEMES AND
WITH A MULTI-TIME STEPPING

If the time scheme of the subdomain 2 has a smaller time step than the time scheme of the subdomain 1 , according to what
is being done in the literature and particularly in FETI method, the velocity can be interpolated linearly at the interface of the
subdomains from the beginning to the end of the coarse time step13, 17.

Let i be the time step number of the subdomain 1 (time step dt1) and p the fine time step of the subdomain 2 (time step dt2).
Let’s also consider the coarse time step is divided in an integer number N of time steps dt2:

dt1 = Ndt2; (43)
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FIGURE 7 Interpolation of the velocity inside subdomain 2 with fine time step p + 1 at the interface of the subdomain 1 with
coarse time step i + 1
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The evolution of the velocity for subdomain 2 at its interface over the coarse time step in the subdomain 1 is therefore written
(with �

p
À [0, 1]) as proposed in13:
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i
(44)

This means that the time connection at the interface between the subdomains is still completely controlled by the velocity.
Displacements and accelerations can be deduced in the same way as before in the following way:

h

n

l

n

j

u
2

p+1 = C
2
*1 ⇠

v
2

p+1 *D
2

p

⇡

a
2

p+1 = A
2
u

2

p+1 + B
2

p

(45)

At each fine time step p+ 1, the new kinematic above that must be imposed at the interface of the subdomain 2 is calculated
as many times as there are internal time steps in step between i and i + 1.

4.1 Resisting forces at the interface between the subdomains
The resisting force F

2
⇠

u
2

p+1, v
2

p+1,a
2

p+1

⇡

is thus calculated in this loop by updating the trajectory imposed by the linear
interpolation of the velocity, and also by updating the internal variables.

At the end of the sequence of the N time steps, the resisting force F 2
⇠

u
2

p+1, v
2

p+1,a
2

p+1

⇡

is obtained when v
2

p+1 = v
1

i+1. This
is the resisting force returned to subdomain 1 .

The VVP* gives then (where f , g, and h are the functions depending of the time schemes):

≈v<, t
v

1
<

i+1F
1
⇠

u
1

i+1, v
1

i+1,a
1

i+1

⇡

+ t
v

2
<

p+1F
2
⇠

u
2

p+1, v
2

p+1,a
2

p+1

⇡

= 0

€ ≈v<, t
v

1
<

i+1F
1
⇠

u
1

i+1, v
1

i+1,a
1

i+1

⇡

+ t
v

1
<

i+1F
2
⇠

f (u 1

i+1), g(u
1

i+1),h(u
1

i+1)
⇡

= 0
(46)

Here again, the resisting force F
2 does not need to be modified to be introduced into the equilibrium equation because

t
v

2
<

p+1 =
t
v

1
<

i+1

4.2 Algorithmic tangent operator for implicit schemes
The subdivision of time steps is actually not so simple in the case of implicit scheme for multi time stepping couplings and for
which the tangent operator must be derived in order to keep the quadratic convergence. Indeed the evolution of the resisting
force F

2 must be taken into account all along the fine time steps dt2 over dt1 to be able to correctly compute the algorithmic
tangent operator defined as:

Ék
p+1 =

)F
2

p+1

)u
1

i+1

(47)

This operator (that will be calculated in the next subsection) is defined at the last fine time step p+1 when the velocity finally
coincides with the velocity of the time step i + 1 in subdomain 1 :

The problem to calculate easily the derivative of F 2

p+1 with respect to u
1

i+1 lies in the fact the resisting force varies according
to the evolution of the internal kinematic variables of subdomain 2 . The internal equilibrium equation at each time step p + 1
evolves according to the previous step’s kinematics (time step p). Indeed, this relationship is now not explicitly given.

4.2.1 Internal equilibrium equation linearisation
To find the appropriate static condensation at each time step p+1, it is necessary to take the variation of the internal equilibrium
equation for every fine time step p + 1.

For every call to subdomain 2 (N times on the loop over p+1 index which varies from 1 to N), the internal newton’s iterations
(on (k)) of subdomain 2 make it possible to converge towards an internal equilibrium equation given by the residual R(k)

p+1 = 0.

STEPHANE GRANGE ET AL 13

The global resisting force vector of the subdomain 2 coming from the assembly of the subdomain 2 is written as (b=dofs at
the interface and r=internal dofs):

F
g 2

p+1 =
4

f
b

f
r

5

=
b

f

f

d

F
2

p+1

F
2
(k)

p+1

c

g

g

e

=
L

F
2

p+1
*R(k)

p+1

M

(48)

Note: The residual term R
(k)
p+1 contains obviously the internal forces of subdomain 2 but it also contains external body or

surface forces of the subdomain.

The displacements from the subdomain 2 can be written as:

dU
2

p+1 =
4

du
b

du
r

5

=
L

du
2

p+1

du
2
(k)

p+1

M

(49)

Important step of the demonstration: We must be aware that for every call into the loop over p+1, the resisting force F 2

p+1
depends obviously of u 2

p+1 (if the displacement is the unknown of the subdomain 2 ), but also from the kinematic of the previous
step p through D

2

p
and B

2

p
.

The same stands for the internal equilibirum of the subdomain 2 which depends on: u 2
(k)

p+1 at the current time step p + 1 but

also D
2
(k)

p
, B 2

(k)

p
from the previous step p.

As a reminder the following time scheme relationships are enforced for the degrees of freedom at the interface of the
subdomains, and for the internal nodes of the subdomain 2 :

T

v
2

p+1 = C
2
u

2

p+1 +D
2

p

a
2

p+1 = A
2
u

2

p+1 + B
2

p

and
h

n

l

n

j

v
2
(k)

p+1 = C
2
u

2
(k)

p+1 +D
2
(k)

p

a
2
(k)

p+1 = A
2
u

2
(k)

p+1 + B
2
(k)

p

(50)

Let’s now consider a new variable W collecting kinematic at previous time step p:

W
2

p
= t

⌧

B
2

p
B

2
(k)

p
D

2

p
D

2
(k)

p

�

(51)

Note:
In the following section, W 2

p
will also be written as:

W
2

p
=
L

B
g 2

p

D
g 2

p

M

(52)

with B
g 2

p
(expressed with superscript g) because it collects all the degrees of freedom of the subdomain 2 and can be

decomposed in B
2

p
for the degrees of freedom at the interface, and B

2
(k)

p
for the internal degrees of freedom. The same stands

for Dg 2

p
.

Recalling that:

U
2

p+1 =
t

⌧

u
2

p+1 u
2
(k)

p+1

�

(53)

Then, as the global resisting force can be written as: F g 2

p+1 = F
g 2

p+1

0

u
2

p+1, u
2
(k)

p+1 ,D
2

p
,B

2

p
,D

2
(k)

p
,B

2
(k)

p

1

, we can therefore

write as follows in a more general way (because subdomain 2 is written in displacement):

F
g 2

p+1 = F
g 2

p+1

⇠

U
2

p+1,W
2

p

⇡

(54)

This expression must now be derived with respect to the domain variable 1 (here the displacement for example):
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The evolution of the velocity for subdomain 2 at its interface over the coarse time step in the subdomain 1 is therefore written
(with �

p
À [0, 1]) as proposed in13:

v
2

p+1 = �
p+1v

1

i+1 + �
p
v

1

i
(44)

This means that the time connection at the interface between the subdomains is still completely controlled by the velocity.
Displacements and accelerations can be deduced in the same way as before in the following way:

h

n

l

n

j

u
2

p+1 = C
2
*1 ⇠

v
2

p+1 *D
2

p

⇡

a
2

p+1 = A
2
u

2

p+1 + B
2

p

(45)

At each fine time step p+ 1, the new kinematic above that must be imposed at the interface of the subdomain 2 is calculated
as many times as there are internal time steps in step between i and i + 1.

4.1 Resisting forces at the interface between the subdomains
The resisting force F

2
⇠

u
2

p+1, v
2

p+1,a
2

p+1

⇡

is thus calculated in this loop by updating the trajectory imposed by the linear
interpolation of the velocity, and also by updating the internal variables.

At the end of the sequence of the N time steps, the resisting force F 2
⇠

u
2

p+1, v
2

p+1,a
2

p+1

⇡

is obtained when v
2

p+1 = v
1

i+1. This
is the resisting force returned to subdomain 1 .

The VVP* gives then (where f , g, and h are the functions depending of the time schemes):

≈v<, t
v

1
<

i+1F
1
⇠

u
1

i+1, v
1

i+1,a
1

i+1

⇡

+ t
v

2
<

p+1F
2
⇠

u
2

p+1, v
2

p+1,a
2

p+1

⇡

= 0

€ ≈v<, t
v

1
<

i+1F
1
⇠

u
1

i+1, v
1

i+1,a
1

i+1

⇡

+ t
v

1
<

i+1F
2
⇠

f (u 1

i+1), g(u
1

i+1),h(u
1

i+1)
⇡

= 0
(46)

Here again, the resisting force F
2 does not need to be modified to be introduced into the equilibrium equation because

t
v

2
<

p+1 =
t
v

1
<

i+1

4.2 Algorithmic tangent operator for implicit schemes
The subdivision of time steps is actually not so simple in the case of implicit scheme for multi time stepping couplings and for
which the tangent operator must be derived in order to keep the quadratic convergence. Indeed the evolution of the resisting
force F

2 must be taken into account all along the fine time steps dt2 over dt1 to be able to correctly compute the algorithmic
tangent operator defined as:

Ék
p+1 =

)F
2

p+1

)u
1

i+1

(47)

This operator (that will be calculated in the next subsection) is defined at the last fine time step p+1 when the velocity finally
coincides with the velocity of the time step i + 1 in subdomain 1 :

The problem to calculate easily the derivative of F 2

p+1 with respect to u
1

i+1 lies in the fact the resisting force varies according
to the evolution of the internal kinematic variables of subdomain 2 . The internal equilibrium equation at each time step p + 1
evolves according to the previous step’s kinematics (time step p). Indeed, this relationship is now not explicitly given.

4.2.1 Internal equilibrium equation linearisation
To find the appropriate static condensation at each time step p+1, it is necessary to take the variation of the internal equilibrium
equation for every fine time step p + 1.

For every call to subdomain 2 (N times on the loop over p+1 index which varies from 1 to N), the internal newton’s iterations
(on (k)) of subdomain 2 make it possible to converge towards an internal equilibrium equation given by the residual R(k)

p+1 = 0.
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And then, the classical relationship is obtained for the algorithmic operator at the global level:

dF
g 2

i+1 =
⇠

MA
2 + CC

2 +K

⇡

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

ÉK

dU
2

i+1 (38)

In this previous relationship, ÉK is the global algorithmic tangent operator of subdomain 2 (with all the degrees of freedom
of the subdomain (internal degrees of freedom and at the interface).

Then:
L

dF
2

i+1

dF
2
(k)

i+1

M

= ÉK

L

du
2

i+1

du
2
(k)

i+1

M

= ÉK

L

C
2
*1

C
1
du

1

i+1

du
2
(k)

i+1

M

(39)

At internal convergence of the subdomain 2 , the residual is 0 and the internal forces vanishes then: F 2
(k)

i+1 = *R 2
(k)

i+1 = 0, so

that: �F 2
(k)

i+1 = 0.

Thus a simple static condensation of the 2nd equation of this system can be operated on the first one to obtain:

0 = ÉK
rb
C

2
*1

C
1
du

1

i+1 + ÉK
rr
du

2
(k)

i+1 (40)
and give in the first equation:

dF
2

i+1 =
4

ÉK
bb
C

2
*1

C
1 * ÉK

br
ÉK
*1
rr

ÉK
rb
C

2
*1

C
1
5

du
1

i+1 (41)

And then:
dF

2

i+1 =
⌧

ÉK
bb
* ÉK

br
ÉK
*1
rr

ÉK
rb

�

≠́≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠̈

Ék

C
2
*1

C
1
du

1

i+1 (42)

In the end, this demonstration shows the internal sti�ness matrix of the subdomain 2 must be multiplied by the time connection
factor between the both time schemes: C 2

*1

C
1 .

The same demonstration can be made if the principal variable of the subdomains are the velocities or the accelerations.

4 COUPLING BETWEEN 2 SUBDOMAINS WITH DIFFERENT TIME SCHEMES AND
WITH A MULTI-TIME STEPPING

If the time scheme of the subdomain 2 has a smaller time step than the time scheme of the subdomain 1 , according to what
is being done in the literature and particularly in FETI method, the velocity can be interpolated linearly at the interface of the
subdomains from the beginning to the end of the coarse time step13, 17.

Let i be the time step number of the subdomain 1 (time step dt1) and p the fine time step of the subdomain 2 (time step dt2).
Let’s also consider the coarse time step is divided in an integer number N of time steps dt2:

dt1 = Ndt2; (43)

t

v
i

v
i+1

v
p+1

dt2

dt1

FIGURE 7 Interpolation of the velocity inside subdomain 2 with fine time step p + 1 at the interface of the subdomain 1 with
coarse time step i + 1



Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023 

5 

 

(14) 

 

Where, the array 𝑾'
(%) contains the times schemes parameters defined at the previous sub time step: 

 

(15) 

 

Moreover, at the interface, by imposing the velocity evolving linearly during the coarse time step, a kinematic relationship can 
be written between the displacement at the interface in subdomain 2 and the displacement imposed at the end of the coarse time 
step at the interface in subdomain 1: 

(16) 

With: 

(17) 

 

With 𝒓(
(%), 𝒎(%) and  𝒒(%), rectangular operators only dependant on the time scheme parameters of subdomain 2 (as developed 

in details in [12]). 

The last term of Eq. (14) that must to be evaluated is the increment of kinematic array 𝑑𝑾'
(%) which can be calculated using 

the time scheme parameters of subdomain 2 as demonstrated in [12] and where 𝑴(%) and 𝑸(%) are rectancular operators that 
concatenante 𝒎(%) and  𝒒(%) (as developed in detailed in [12]) 

(18) 

Finally the increment of the resisting force of subdomain 2 can be calculated over every fine time step 𝑝 + 1	of subdomain 2 
and is given by Eq. (19):  

(19) 

This last equation contains the resisting force at the interface (b) and for the internal nodes (r). Because at convergence, there 
is equilibrium on the internal degrees of freedom and then 𝑹'"#

()) = 0	vanishes as in Eq. (12), it is then possible to condense this 
equation on the equations at the interface. 

(20) 

 

The link between 𝑑𝒖'"#
(%)  is then introduce into the first equation of Eq. (19) (dynamic condensation): 

(21) 

 

The following relationship can then be obtained : 

 

(22) 

 

 

Finally, the computation of the algorithimic tangent operator from subdomain 2 to subdomain 1 is summarized as follows and 
requires only to compute rectangular operators (that only contains time schemes parameters), and is quite straightforward to 
calculate over the coarse time step of subdomain 1. 
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or:

dF
g 2

p+1 =
)F

g 2

p+1

)U
2

p+1

dU
2

p+1 +
)F

g 2

p+1

)W
2

p

dW
2

p
(55)

This last equation shows two important tangent operators terms:

• ÉK =
)F

g
2

p+1

)U
2
p+1

, is the classical algorithmic tangent operator coming from the classical assembly from the subdomain 2

• ÉS =
)F

g
2

p+1

)W
2
p

, is a complementary term coming from the kinematic variables W 2

p

The multi-time stepping coupling method thus requires at the level of subdomain 2 to assemble theses two matrices.

4.2.2 Analytical expression of the tangent operators ÉK and ÉS

The linearisation of the global resisting force coming from the subdomain 2 reads:

dF
g 2

⇠

U
2

p+1,V
2

p+1,A
2

p+1

⇡

= MdA
2

p+1 + CdV
2

p+1 +KdU
2

p+1 (56)

Note:
As already seen before, this is important to note that this linearisation necessarily exists or can in any case be approached because
it has necessarily been used to obtain the balance of the internal degrees of freedom of the sub-domain 2 ,

Finally at convergence, equation 56 reads:

4

M
bb

M
br

M
rb

M
rr

5

L

da
2

p+1

da
2
(k)

p+1

M

+
4

C
bb

C
br

C
rb

C
rr

5

L

dv
2

p+1

dv
2
(k)

p+1

M

+
4

K
bb

K
br

K
rb

K
rr

5

L

du
2

p+1

du
2
(k)

p+1

M

=
L

dF
2

p+1
0

M

(57)

As the time-scheme discretisation is valid into subdomain 2 for internal degrees of freedom and at the interface, we get (using
the notation of equation 52):

T

A
2

p+1 = A
2
U

2

p+1 + B
g 2

p

V
2

p+1 = C
2
U

2

p+1 +D
g 2

p

(58)

and thus di�erentiating these expressions (knowing that the quantities Bg 2

p
and D

g 2

p
over the sub-time steps p are no longer

constant, as it was the case in single time steps), we get:
T

dA
2

p+1 = A
2
dU

2

p+1 + dB
g 2

p

dV
2

p+1 = C
2
dU

2

p+1 + dD
g 2

p

(59)

Then:

dF
g 2

p+1 =
⇠

MA
2 + CC

2 +K

⇡

dU
2

p+1 +MdB
g 2

p
+ CdD

g 2

p
(60)

And finally:

dF
g 2

p+1 =
⇠

MA
2 + CC

2 +K

⇡

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

ÉK

dU
2

p+1 +
⌅

M C
⇧

≠́Ø≠̈

ÉS

dW
2

p
(61)

With ÉK and ÉS the global algorithmic operators from the subdomain 2 that contains all the degrees of freedom of the
subdomain (internal and interface). In practice, ÉS is as easy to assemble as ÉK .

In conclusion, in multi-time stepping, the global tangent operator has two terms and is expressed as:

dF
g 2

p+1 = ÉKdU
2

p+1 + ÉSdW
2

p
(62)

The following section will give the method to get the relationship between dW
2

p+1 and dU
2

p+1 in two steps:
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The global resisting force vector of the subdomain 2 coming from the assembly of the subdomain 2 is written as (b=dofs at
the interface and r=internal dofs):

F
g 2

p+1 =
4

f
b

f
r

5

=
b

f

f

d

F
2

p+1

F
2
(k)

p+1

c

g

g

e

=
L

F
2

p+1
*R(k)

p+1

M

(48)

Note: The residual term R
(k)
p+1 contains obviously the internal forces of subdomain 2 but it also contains external body or

surface forces of the subdomain.

The displacements from the subdomain 2 can be written as:

dU
2

p+1 =
4

du
b

du
r

5

=
L

du
2

p+1

du
2
(k)

p+1

M

(49)

Important step of the demonstration: We must be aware that for every call into the loop over p+1, the resisting force F 2

p+1
depends obviously of u 2

p+1 (if the displacement is the unknown of the subdomain 2 ), but also from the kinematic of the previous
step p through D

2

p
and B

2

p
.

The same stands for the internal equilibirum of the subdomain 2 which depends on: u 2
(k)

p+1 at the current time step p + 1 but

also D
2
(k)

p
, B 2

(k)

p
from the previous step p.

As a reminder the following time scheme relationships are enforced for the degrees of freedom at the interface of the
subdomains, and for the internal nodes of the subdomain 2 :

T

v
2

p+1 = C
2
u

2

p+1 +D
2

p

a
2

p+1 = A
2
u

2

p+1 + B
2

p

and
h

n

l

n

j

v
2
(k)

p+1 = C
2
u

2
(k)

p+1 +D
2
(k)

p

a
2
(k)

p+1 = A
2
u

2
(k)

p+1 + B
2
(k)

p

(50)

Let’s now consider a new variable W collecting kinematic at previous time step p:

W
2

p
= t

⌧

B
2

p
B

2
(k)

p
D

2

p
D

2
(k)

p

�

(51)

Note:
In the following section, W 2

p
will also be written as:

W
2

p
=
L

B
g 2

p

D
g 2

p

M

(52)

with B
g 2

p
(expressed with superscript g) because it collects all the degrees of freedom of the subdomain 2 and can be

decomposed in B
2

p
for the degrees of freedom at the interface, and B

2
(k)

p
for the internal degrees of freedom. The same stands

for Dg 2

p
.

Recalling that:

U
2

p+1 =
t

⌧

u
2

p+1 u
2
(k)

p+1

�

(53)

Then, as the global resisting force can be written as: F g 2

p+1 = F
g 2

p+1

0

u
2

p+1, u
2
(k)

p+1 ,D
2

p
,B

2

p
,D

2
(k)

p
,B

2
(k)

p

1

, we can therefore

write as follows in a more general way (because subdomain 2 is written in displacement):

F
g 2

p+1 = F
g 2

p+1

⇠

U
2

p+1,W
2

p

⇡

(54)

This expression must now be derived with respect to the domain variable 1 (here the displacement for example):
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Note:
The acceleration can also be deduced if needed as:

da
2

p+1 =
⌧

*A 2
C

2
*1

1
�

≠́≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠̈

tr
2
a

L

dD
2

p

dB
2

p

M

+ A
2
C

2
*1

dv
2

p+1 (69)

Finally the increment of displacement is given by:

du
2

p+1 =
t
r

2

u
q

2
du

2

p
+ t

r
2

u
m

2
q

2
du

2

p*1 +
t
r

2

u
m

2
m

2
q

2
du

2

p*2 +5 + C
2
*1

�
p+1C

1
du

1

i+1 (70)

Then:

du
2

p+1 = C
2
*1

�
p+1C

1
du

1

i+1 +
p
…

j=0

t
r

2

u
m

2
j

q
2
du

2

p*j (71)

Let’s introduce the operator H 2

p+1 =
du

2
p+1

du
1
i+1

, then, by dividing the equation by du
1

i+1, it leads to:

du
2

p+1 = H
2

p+1du
1

i+1 (72)
with:

H
2

p+1 = C
2
*1

�
p+1C

1 +
p
…

j=0

t
r

2

u
m

2
j

q
2
H

2

p*j (73)

Note:
If the sub-time step dt2 is given by dt2 = dt1

N
, then the index p will vary between p = 0 and p + 1 = N . Moreover, the initial

condition on H
2

p+1 for p = 0 is: H 2

0 = 0

4.2.4 Algorithmic static condensation to get the tangent operator coming from subdomain 2
This section is devoted to show how can be calculated the algorithmic tangent operator for multi-time stepping using a technic
of static condensation.

Important preliminary note:
Till now, the notation of the term dW
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This order was chosen because it was straightforward to demonstrate the form of the additional matrix ÉS.
In order to simplify the demonstration, the following notation for dW 2
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will be used:
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It means that a rearrangement of the degrees of freedom of the matrix ÉS is needed. But this rearrangement can be made easily
numerically as it is usually the case when rearranging usual degrees of freedom of ÉK matrix.
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Note:
The acceleration can also be deduced if needed as:
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Finally the increment of displacement is given by:
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It means that a rearrangement of the degrees of freedom of the matrix ÉS is needed. But this rearrangement can be made easily
numerically as it is usually the case when rearranging usual degrees of freedom of ÉK matrix.
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Then, using the demonstration of the previous section which was valable at the level of the degrees of freedom at the interface
of the subdomain but which is also valable for the internal degrees of freedom of the subdomain 2 , we get:
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Which can be written easily in the following way using two new operators M 2 and Q
2 only dependant of the time-scheme

in subdomain 2 :
dW

2

p
= M

2
dW

2

p*1 +Q
2
dU

2

p
(77)

Finally, the expression of the di�erentiation of the global resisting force of subdomain 2 gives the following recurring
relationship:

dF
g 2

p+1 = ÉKdU
2

p+1 + ÉSdW
2

p
(78)

that can be also written as:
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Then:
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2
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Then finally:
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p
…

j=0
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2
j

Q
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p*j (81)

The term dU
2

p+1 can be expressed using the H
2

p+1 matrix. On the other hand, the du
2
(k)

p+1 (internal to subdomain 2 ) will be
deduced in the next subsection from the algorithmic static condensation of this operator.

Algorithmic static condensation
The algorithmic static condensation is done on the internal equilibrium equation which vanishes at convergence.

F
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at convergence
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then:
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(83)

The 2nd equation (equal to 0) can be written in blocks (on the internal degrees of freedom internal of the subdomain 2 ):
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2
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⇠
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= 0 (84)

The resolution of this equation allows to calculate the relationship between the internal degrees of freedom du
2
(k)

p*j and the
displacements at the interface of the subdomain 2 : du 2

p+1 = H
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p+1du
1

i+1.
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(85)
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Then, using the demonstration of the previous section which was valable at the level of the degrees of freedom at the interface
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Which can be written easily in the following way using two new operators M 2 and Q
2 only dependant of the time-scheme

in subdomain 2 :
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Finally, the expression of the di�erentiation of the global resisting force of subdomain 2 gives the following recurring
relationship:
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Then finally:
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The term dU
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p+1 can be expressed using the H
2

p+1 matrix. On the other hand, the du
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(k)

p+1 (internal to subdomain 2 ) will be
deduced in the next subsection from the algorithmic static condensation of this operator.

Algorithmic static condensation
The algorithmic static condensation is done on the internal equilibrium equation which vanishes at convergence.
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then:
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The 2nd equation (equal to 0) can be written in blocks (on the internal degrees of freedom internal of the subdomain 2 ):
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The resolution of this equation allows to calculate the relationship between the internal degrees of freedom du
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p*j and the
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Then, using the demonstration of the previous section which was valable at the level of the degrees of freedom at the interface
of the subdomain but which is also valable for the internal degrees of freedom of the subdomain 2 , we get:
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relationship:
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The term dU
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p+1 can be expressed using the H
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p+1 matrix. On the other hand, the du
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p+1 (internal to subdomain 2 ) will be
deduced in the next subsection from the algorithmic static condensation of this operator.

Algorithmic static condensation
The algorithmic static condensation is done on the internal equilibrium equation which vanishes at convergence.
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The 2nd equation (equal to 0) can be written in blocks (on the internal degrees of freedom internal of the subdomain 2 ):
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The resolution of this equation allows to calculate the relationship between the internal degrees of freedom du
2
(k)

p*j and the
displacements at the interface of the subdomain 2 : du 2
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Then:
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Let’s now consider for the internal degrees of freedom an operator T
p*j as: du 2

(k)

p*j = T
p*jdu
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i+1
Then the previous equation can be written as:
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or:
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The operator T
p+1 that can be calculated by a recurrent sequence allows to make a condensation of the internal degrees of

freedom of the subdomain 2 on the degrees of freedom at the interface of the subdomain: du 2
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p+1 = T
p+1du
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i+1

Then, if we introduce into the first equation of the system 83, we get finally:
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then:
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and finally the algorithmic tangent operator is equal to:
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In practice, therefore, the algorithmic tangent operator is calculated on a recurring sequence as follows:
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Note:
When the time step is not subdivided, the classical static condensation is found naturally by simplifying this expression (because
index j is going from j = 0 to 0 with H

2

0 = 0):
Then: H 2

1 = C
2
*1

C
1 and T 1 = * ÉK

*1
rr

⌧
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C

2
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C
1
�

And finally: Ék1 =
⇠

ÉK
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* ÉK

br
ÉK
*1
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Let’s now consider for the internal degrees of freedom an operator T
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The operator T
p+1 that can be calculated by a recurrent sequence allows to make a condensation of the internal degrees of

freedom of the subdomain 2 on the degrees of freedom at the interface of the subdomain: du 2
(k)
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In practice, therefore, the algorithmic tangent operator is calculated on a recurring sequence as follows:
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Note:
When the time step is not subdivided, the classical static condensation is found naturally by simplifying this expression (because
index j is going from j = 0 to 0 with H

2

0 = 0):
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The same kind of demonstration can be done when the main unknowns of subdomain 1 or 2 (or both of them) is the velocity 
(instead of the displacement). More details are provided and demonstrated in [12]. 

NUMERICAL SIMULATIONS 

Building pounding (Newmark/Euler coupling)  

In this section, a portal frame with a node in contact with an adjacent very stiff building is subjected to a seismic input. In order 
to correctly take into account the rigid contact, a linear complementarity problem [13] must be solved within the framework of 
non smooth mechanics. Thus, an Euler integration scheme (first order scheme) is used to correctly treat the velocity 
discontinuities at the time of impact. The dynamic equilibrium of domain 1 (in black on the figure) is treated with a Newmark 
scheme (𝛽 = #

*
, 𝛾 = #

%
, 𝑑𝑡# = 1. 10+,𝑠), while domain 2 (where complementarity is taken into account for the impact, see [13] 

for more details on this technique) is solved dynamically with an Euler+𝜃 scheme (𝜃 = #
%
, 𝑚 = -.!

-."
= 1). The interface between 

both subdomains (at nodes 4 and 5) is treated using the proposed algorithm. Euler-Bernoulli beam finite elements are used with 
the following parameters: Young’s modulus 𝐸 = 30.10/𝑃𝑎, cross section 𝑆 = 0.04𝑚%,	inertia 𝐼𝑧 = 3.3.10+0𝑚*	and a density 
𝜌 = 2500𝑘𝑔/𝑚,. As the contact is very rigid, a viscous damping 𝜂 = 5. 10+,s	(defined on the stiffness matrix as 𝑪 = 𝜂𝑲) is 
considered into the structure in order to attenuate the spurious vibrations. Perfect hinges are considerated as boundary conditions 
at nodes 1 and 2 and the impact occurs at node 6. An initial gap g=0.2m is considered between node 6 and the rigid contact-
impact point.  

 
Figure 3. Portal frame under seismic loading with impact (building pounding): in black the subdomain 1 solved with a 

Newmark time scheme and in red the domain 2 solved using an Euler time scheme and the complementarity method for the 
impact. 

A reference test case is also performed (using Euler time scheme for the whole structure without substructuring the problem). 
The Figure 4 shows a comparison of the model decomposed into 2 subdomains (named multi_TS) with the reference for 𝑚 =
-.!
-."

= 1 in terms of horizontal displacement (Figure 4(a)) and horizontal velocity (Figure 4(b)) of the node 3. The proposed 
interface allows to obtain very good agreement between the simulations. Figure 4(c) shows the evolution of kinematic and 
elastic potential energy. Total mechanical energy is also displayed (by considering the seisimic input energy and the viscous 
dissipation). The total energy remains constant. This means the interface element between the subdomains does not dissipate 
energy. 
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Note:
When the time step is not subdivided, the classical static condensation is found naturally by simplifying this expression (because
index j is going from j = 0 to 0 with H
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(a)                        (b) 

 
  (c) 

Figure 4. Portal frame under seismic loading with impact (building pounding). Comparison between the multi time schemes 
simulations and a reference solution: (a) horizontal displacements, (b) horizontal velocity at node 3, and (c) energy balance. 

 

In terms of convergence, the algorithmic tangent operator provided by the interface element allows to keep a quadratic 
convergence of the model. 

2D non linear dynamic three points bending test  (Newmarl/Euler coupling)  

This numerical simulation considers a 2D dynamic three points bending test. The beam (L=10.5m length, h=1m height, e=0.3m 
thick) is clamped at its both ends and an instantaneous vertical force is applied at mid span (Figure 5). It simulates a progressive 
collapse when a support at the middle of the beam is lost due to an accidental solicitation. In order to make sure the algorithm 
does not dissipate energy, the force 𝐹1 = −7𝑀𝑁 is then released at t=0.1s and the beam freely oscillates until the end of the 
simulation. Subdomain 1 is simulated with Newmark time scheme (𝛽 = #

*
, 𝛾 = #

%
, 𝑑𝑡# = 2. 10+*𝑠) while subdomain 2 is solved 

using Euler+𝜃 method (𝜃 = #
%
, 𝑚 = -.!

-."
= 5).  

A non-linear constitutive law (plane stress J2 plasticity, see Simo and Hughes [14]) is considered with a Young’s modulus E = 
210 GPa, a Poisson’s ratio 𝜈 = 0.2, a yield stress fy = 500 MPa, an isotropic hardening parameter H = 20 GPa, and a density 𝜌 
= 7800 kg⁄m3. In this simulation, as the response of the beam is quite smooth, no damping has been considered. It means the 
only dissipation of energy is due to plasticity (material damping). After t=0.1s and due to hardening developed earlier, the beam 
oscillates in its linear domain and shows no dissipation while a permanent deflection is generated. 
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Figure 5. 2D dynamic three points bending test. The domain 1 is solved with a Newmark time scheme and in the domain 2 is 

solved using an Euler time scheme. An instanenous force is applied at the middle at t=0s and then released at t=0.1s. 

The Figure 6 shows the displacements, velocity and energy balance.  The oscillations of the beam have a constant amplitude 
after releasing the force and the energy remains constant showing that no energy is dissipated at the interface. 

   
(a)         (b) 

 
(c) 

Figure 6. 2D dynamic three point bending test. Comparison between the multi time schemes simulations and a reference 
solution: (a) vertical displacements, (b) vertical velocity at the middle of the beam, and (c) energy balance. 

CONCLUSIONS 

The coupling method presented in this work allows to sub-structure domains whose resolution is implicit and with different 
time schemes (heteregoneous) and different time steps (asynchronous). The algorithmic tangent operator allowing to keep a 
quadratic convergence are demonstrated. From the examples, it is shown that there is no energy dissipation due to the resolution 
of the interface between the two domains. Other couplings can be considered with this method with HHT type schemes or 
algorithms for solving partial differential equations based on Cauchy problems. 
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