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ABSTRACT 

System seismic fragility analyses based on Gaussian mixture seismic demand models have been deemed less biased compared 
to other multivariate probabilistic seismic demand model (MPSDM) approaches due to its inherent flexibility for density 
modeling. Nonetheless, no further verification had been provided to validate the accuracy of the Gaussian mixture-based 
approach, which is addressed in this paper. Fragility analysis are a versatile probabilistic tool for seismic performance 
assessment typically employed in post-event planning and retrofitting prioritization of transportation networks. Analytical 
fragility functions of multicomponent structures are commonly built upon MPSDMs, which in turn rely on simplifying 
hypotheses on the distribution of component seismic demands and their interactions. To avoid the introduction of modeling 
error, a nonparametric bootstrapping technique is used to construct system fragility functions for a case-study bridge located in 
Eastern Canada. From the bootstrap fragility replications, the corresponding mean annual frequencies of damage state 
exceedance are estimated to give an indication of bias for three different MPSDM strategies. Typical strong assumptions such 
as lognormality and linear dependence are here investigated. Accordingly, significant error may be propagated from the demand 
model into risk estimates depending on the importance of the component’s fragility to the whole system vulnerability, and the 
GM model shows satisfactory performance. 

Keywords: fragility analysis, bridges, seismic risk, seismic demand, bootstrap. 

INTRODUCTION 

Intermediate steps of an analytical seismic fragility analysis may include the construction of a model that establishes a 
probabilistic relationship between the structural response and the earthquake intensity measure (IM): the probabilistic seismic 
demand model (PSDM) [1]. In the case of multicomponent structures, such as highway bridges, the seismic performance can 
be assessed at the component and system levels, each one with distinct usage and importance. Often, component level damages 
are used to estimate repair actions and costs, while system-level performance are obtained from the combination of component 
damages and often relates to outcomes such as lane closures, and load or speed restrictions [2]. Past studies proposed 
methodologies to develop PSDMs that consider the contribution of multiple critical components based on system reliability 
and acknowledging the existence of correlation between pairs of structural component responses [3]. One example is the 
framework proposed by [4] for creation of multivariate probabilistic seismic demand models (MPSDM), which has been 
broadly employed in analytical fragility analyses of highway bridges since then (e.g., [5,6]).  

Fragility functions are inherently uncertain quantities subject to multiple sources of both aleatory and epistemic uncertainty. 
One of these sources is related to the hypotheses adopted in the development of probabilistic seismic demand models [7]. Due 
to its simplicity and tractability, component seismic demand is often assumed to be lognormally distributed. Lognormality of 
engineering demand parameters (EDP) (i.e., the seismic demand) is a heritage of the typical assumption on intensity measures 
(e.g., peak ground acceleration or spectral quantities) and has been validated in studies that used either single-degree-of-
freedom or two-dimensional frame models (e.g., [8]). Conversely, it has been rejected as a general assumption in the case of 
bridges, while the importance of the error carried into fragility analysis depends on how far the model is from reality (e.g., 
[9,10]). With respect to the dependence between pairs of component responses, more complex nonlinear relationships within 
bridge components have been observed [11]. Accordingly, some approaches have been proposed to avoid this assumption and 
model a nonlinear dependence (e.g., [10,12]). The assumption of linear dependence, however, is commonly made for the sake 
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of simplicity. This hypothesis may introduce significant bias into fragility estimates depending on how good the fitted model 
represents the observed seismic response. 

In a recent study performed by the authors [10] on a specific bridge in Eastern Canada, the fragility analyses based on Gaussian 
mixture seismic demand models were deemed less biased than other MPSDM approaches due to its inherent flexibility. At that 
point, however, no further verification was provided to check the accuracy of the proposed approach. The analyses presented 
here are thus aimed to address this limitation. To this end, bootstrap-based fragility curves are generated, allowing the statical 
inference on the fragility functions for the same case-study bridge. Finally, from the bootstrap fragility curve replications, the 
corresponding mean annual frequency of damage state exceedance are estimated to give an indication of bias of the investigated 
MPSDM strategies. 

GAUSSIAN MIXTURE SEISMIC DEMAND MODELS  

A Gaussian mixture (GM) seismic demand model [10] is built upon GM models fit on the peak structural responses generated 
according to multiple-stripe analysis (MSA) [13]. In a GM model, the data points at a given stripe IM = 𝑖𝑖𝑚𝑚𝑗𝑗 are assumed to 
follow a finite mixture of Gaussian distributions with unknown parameters. This probabilistic model is defined as the sum of 
𝑛𝑛𝑘𝑘 multivariate normal probability density functions (PDFs), each weighted by a probability 𝜋𝜋𝑘𝑘, with 𝑘𝑘 = 1, … ,𝑛𝑛𝑘𝑘. Taking 𝐗𝐗 
as a multivariate random variable of an observed dataset 𝐱𝐱 (in this case, the logarithm of the response of bridge components at 
a given seismic intensity level 𝐄𝐄𝐄𝐄𝐄𝐄|IM = 𝑖𝑖𝑖𝑖j), the joint posterior PDF for a Gaussian mixture is thus defined by: 

 𝑓𝑓(𝐱𝐱|𝚿𝚿) = ∑ 𝜋𝜋𝑘𝑘𝑓𝑓(𝐱𝐱;𝛍𝛍𝑘𝑘,𝚺𝚺𝑘𝑘)𝑛𝑛𝑘𝑘
𝑘𝑘=1  (1) 

where 𝚿𝚿 = �𝛑𝛑T, 𝝃𝝃1T, … , 𝝃𝝃𝑛𝑛𝑘𝑘
T �T is the vector that aggregates all the hyperparameters, 𝛑𝛑 = �𝜋𝜋1, … ,𝜋𝜋𝑛𝑛𝑘𝑘−1�

T
 is the vector of mixture 

proportions; vectors 𝛏𝛏𝑘𝑘 contain the hyperparameters related to the mean vector 𝛍𝛍𝑘𝑘 and the covariance matrix 𝚺𝚺𝑘𝑘 of the 𝑘𝑘th 
mixture cluster; and 𝑓𝑓(𝐱𝐱;𝝁𝝁𝑘𝑘,𝚺𝚺𝑘𝑘) is the PDF of a multivariate Gaussian with mean 𝛍𝛍𝑘𝑘 and covariance 𝚺𝚺𝑘𝑘. While the mean 
vector indicates the location of the center of each mixture cluster, the covariance matrix incorporates information about the 
variance and correlation structures of the data within each cluster.  

To build the GM seismic demand model, the expectation-maximization algorithm is employed to fit the mixture model to the 
observed dataset. The complexity of a GM model depends on the number of clusters and the type of covariance structure 
adopted, which ranges from diagonal-shared to full-unshared. Therefore, the challenge in constructing the most suitable GM 
model resides on the selection of the number of cluster and covariance structure that fits the observed data without overfitting 
it. In the case of density modeling, this selection can be based on the minimum value of Bayesian information criterion (BIC) 
associated with the fitted models. The BIC estimates the lack of fit using the negative log-likelihood while the model complexity 
is penalized to avoid overfitting [14].  

Advantages of this approach compared to typical MPSDMs reside on its inherent flexibility that allows a best fit to the observed 
data. Figure 1 illustrates an example extracted from Bandini et al. [10] for the seismic responses of bent columns and elastomeric 
bearings in a specific bridge. While the multivariate (MV) lognormal model fails to capture the nonlinear relationship between 
these two components, the GM model with 𝑛𝑛𝑘𝑘 = 4 clusters shows a better fit to the observed data at a certain IM level. Because 
the GM model does not necessarily rely on restrictive assumptions (e.g., lognormality and linear dependence), it allows the 
assessment of the impact of poor modeling and to isolate the source of bias into fragility and risk estimates. 

ESTIMATING FRAGILITY BASED ON MSA DATA 

The seismic fragility of a structure reflects the conditional probability of exceeding a damage state DS given the occurrence of 
a seismic event with intensity IM = 𝑖𝑖𝑖𝑖, i.e., Pr(DS|IM = 𝑖𝑖𝑖𝑖). A fragility function is commonly represented by the cumulative 
distribution function (CDF) of a lognormal distribution: 

 Pr(DS|IM = 𝑖𝑖𝑖𝑖) = Φ�ln(𝑖𝑖𝑖𝑖/𝜃𝜃) 
𝛽𝛽

� (2) 

where Φ(∙) is the CDF of a standard normal distribution and 𝜃𝜃 and 𝛽𝛽 are the median and dispersion of the fragility function. 
An efficient strategy for fragility curve fitting using results from MSA is described by Baker [15] by maximizing the likelihood 
function of the fragility data obtained at multiple levels of intensity measure IM = 𝑦𝑦𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚. In this case, the likelihood 
function is expressed as: 
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Figure 1: Comparison between PSDMs built upon a multivariate lognormal model and a Gaussian mixture model (adapted 

from Bandini et al. [10]) 
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𝑛𝑛𝑗𝑗−𝑧𝑧𝑗𝑗
 (3) 

where 𝑧𝑧𝑗𝑗 is the number of cases of damage state exceedance out of 𝑛𝑛𝑗𝑗 analyses at IM = 𝑦𝑦𝑗𝑗. For simplicity, the parameters of 
the fragility function can then be obtained using the maximum likelihood estimation on the logarithmic of the likelihood 
function. To assess the annual risk of exceeding a specific damage state DS𝑖𝑖, the mean annual frequency (MAF) of violating 
DS𝑖𝑖 can be calculated by integrating the fragility function over the site hazard curve 𝜆𝜆(IM) [16]: 

 𝜆𝜆(DS𝑖𝑖) = ∫ Pr(DS𝑖𝑖|IM = 𝑦𝑦) �d𝜆𝜆(IM)
dIM

�d𝐼𝐼𝐼𝐼 
𝐼𝐼𝐼𝐼  (4) 

BOOTSTRAP SEISMIC FRAGILITY CURVES 

The seismic fragility of a bridge is facilitated by the assumption of series system, which means that the failure of a single 
component results in the system failure. A thorough approach to build system fragility functions treating uncertainty on both 
demand and capacity is facilitated using sampling methods, e.g., Monte Carlo sampling. In this case, the steps involved are: (1) 
the generation of a seismic demand dataset and fitting of joint probabilistic modeling, (2) the generation of capacity samples 
from probabilistic capacity models of critical components, and (3) the pairing of demand and capacity samples data to estimate 
the fragility. To avoid the adoption of parametric assumptions on seismic demand, a nonparametric bootstrap-based approach 
seems to be a suitable strategy to build fragility functions and to perform statistical inference. Bootstrapping estimates the 
distribution of a statistic by repeatedly resampling from the observed data with replacement [17]. Bootstraping has already been 
adopted to assess the uncertainty in fragility and risk quantities within different frameworks (e.g., [16,18]).  

In this study, a bootstrap procedure is proposed to incorporate the uncertainty related to the capacity of structural components 
(Figure 2). At first, seismic demand data EDP𝐷𝐷 is generated using the MSA approach, while component capacity data EDP𝐶𝐶  is 
sampled from a capacity model for a specific damage state DS𝑖𝑖. The size of the demand dataset is 𝑛𝑛 × 𝑚𝑚, where 𝑛𝑛 is the number 
of response history analyses (RHA) in a single stripe and 𝑚𝑚 is the number of intensity measure levels used in MSA (i.e., the 
number of stripes). In this case, the capacity dataset has 𝑛𝑛 samples (i.e., the same number of RHA per stripe) (Step 1 in Figure 
2). Demand and capacity data points are here labeled from 1 to 𝑛𝑛 from the lowest EDP to the highest in ascending order only 
for simplicity. Next, 𝑛𝑛 bootstrap samples are generated for both demand and capacity for each level of seismic intensity measure 
IM = 𝑖𝑖𝑚𝑚𝑗𝑗, 𝑗𝑗 = 1,2, … ,𝑚𝑚. These samples are then paired to compare if the demand exceeds the capacity (i.e., if DS𝑖𝑖 exceedance 
occurs). Resampling and pairing are replicated for 𝑏𝑏 = 1,2, … ,𝐵𝐵 (Step 2 in Figure 2). The bootstrap replications of the number 
of cases of DS exceedance 𝑧𝑧𝑗𝑗,𝑏𝑏 are then obtained, based on the series system assumption. Finally, a replication system fragility 
curve is fitted to the resampled fractions of ground motions causing DS𝑖𝑖 violation at all 𝑚𝑚 intensity levels (Step 3 in Figure 2). 
Thus, applying maximum likelihood estimation to the replication ratios 𝑧𝑧𝑗𝑗,𝑏𝑏/𝑛𝑛, the solution of Equation 3 takes the following 
form in the logarithmic transformed space: 
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𝑗𝑗=1  (5) 

Therefore, the nonparametric aspect of the adopted procedure to develop bootstrap fragility curves resides only on the 
resampled demand data, because these are the limited dataset generated from the response history analyses. The capacity models 
are assumed to follow lognormal distributions, and the shape of the fragility curves is assumed as the lognormal CDF given the 
good fit to the observed data in this study. The corresponding MAFs of damage state exceedance 𝜆𝜆(DS) are then calculated 
according to Equation 4. 

 
Figure 2: Methodology for the construction of bootstrap fragility curves 

CASE-STUDY BRIDGE  

This study assesses the seismic performance of a real case-study structure: the Chemin des dalles Bridge Located over highway 
55 near Trois-Rivière, Quebec, Canada. Due to its regular characteristics and similarities to other provincial bridges, this 
structure has been extensively studied. It is a symmetric continuous concrete girder bridge with three equally spaced 35.5 m 
long spans and a 13.2 m wide deck. A reinforced concrete slab and six prestressed concrete AASHTO type-V girders compose 
the superstructure, while the substructure is formed by two three-column bents and seat-type abutments with wing walls. 
Girders are directly connected on the bent cap beams and rest on elastomeric bearing pads at the abutments. Pier bents are 
composed of circular columns (914 mm diameter) and square section cap beams, with a vertical clearance of 6.2m. A 25.4 mm 
gap separates the deck from the abutment wing walls and back wall. 
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The three-dimensional finite element model created on the Open System for Earthquake Engineering Simulation (OpenSees) 
[19], and it uses beam-column and zero-length elements to represent the behavior of this structural system and to capture the 
nonlinear behavior of critical structural components (bent columns, elastomeric bearings, and abutment wing walls). 
Superstructure elements, including the deck and girders, are defined as linear-elastic elements, while the substructure is 
constituted by the nonlinear elements and soil-structure interaction (Figure 3). Further details on the numerical model and its 
calibration are found elsewhere (Tavares et al. 2013). 

 
Figure 3: Numerical model of the Chemin-des-dalles Bridge built on OpenSees 

The Chemin des Dalles Bridge was designed in 1975, and to reflect the seismic capacity of its reinforced concrete columns, 
experiment-based capacity models [20] are adopted for four damage states, i.e., minimal, repairable, extensive, and probable 
replacement. The capacity models for the other two critical components (abutment wing walls and elastomeric bearings) were 
adapted by Tavares et al. [21] for bridges in Quebec. The capacity models are assumed to follow lognormal distributions and 
are completely defined by median and dispersion (Table 1). 

Table 1. Capacity models for the critical components of the Chemin des Dalles Bridge 

Component 𝐄𝐄𝐄𝐄𝐄𝐄(units) Damage state – median (dispersion) 
Minimal Repairable Extensive Probable replacement 

Abutment wing walls deformation (mm) 7.0 (0.25) 15.0 (0.25) 30.0 (0.46) 60 (0.46) 
Elastomeric bearings deformation(mm) 30.0 (0.25) 60.0 (0.25) 150.0 (0.46) 300.0 (0.46) 
Column drift ratio (%) 0.5 (0.25) 1.4 (0.25) 2.0 (0.46) 2.2 (0.46) 

For the response history analyses, ground motion records were selected using the generalized conditional intensity measure 
(GCIM) approach [22]. The spectral acceleration at the bridge elastic fundamental period in the transverse direction 𝑆𝑆𝑎𝑎(𝑇𝑇1) 
was chosen as the conditioning intensity measure at six levels: 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 g. The levels of spectral acceleration 
correspond to seismic events with return periods ranging from 1,400 to 44,000 years. The conditioned intensity measures were 
peak ground acceleration, peak ground velocity and spectral accelerations at 20 values of period ranging from 0.1 to 2.0 s to 
account for the effects of higher modes and period elongation due to nonlinearities. One hundred (100) ground motion records 
were selected at each level of conditioning 𝑆𝑆𝑎𝑎(𝑇𝑇1) from the NGA-West2 database [23]. Further details on the record selection 
are found in Bandini et al. [10]. 
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INFERENCE ON FRAGILITY AND RISK ESTIMATES 

Ten thousand (10,000) bootstrap replications of the system fragility curves are performed for each of the four damage states. 
A subset of the bootstrap fragility curves is depicted in Figure 4 along with the fragility curves built according to three 
investigated MPSDM strategies: Gaussian mixture, kernel smoothing distribution, and lognormal distribution. While the GM 
model is the most flexible, the kernel smoothing only assumes linear dependence, and the lognormal model relies on both 
investigated hypotheses. For the minimal damage state, all the MPSDM-based fragility curves agree with the bootstrap 
replications, which in turn show a rather small variation. The 95% confidence interval (c.i.) of the median and the dispersion 
of the bootstrap fragility curves are inferred using percentile confidence intervals [17] (Tables 2 and 3, respectively). 
Effectively, the observed small variation is confirmed by the narrow confidence intervals for the minimal damage state, while 
the parameters of the MPSDM-based fragility curves fall within the c.i. thresholds.  

These observations are not valid for the repairable and extensive damage states. Accordingly, while the fragility curves built 
upon the GM and kernel MPSDMs follow the general trend of the bootstrap replications, the fragility curves built upon the 
lognormal model deviate significantly from this trend. This graphical impression is validated by the bootstrap confidence 
intervals. The parameters of the lognormal model are the only that are found out of the 95% bootstrap confidence intervals, 
which is explained by the lack of fit of the lognormal distribution to the deformation of the abutment wing walls for intermediate 
levels of 𝑆𝑆𝑎𝑎(𝑇𝑇1) (see Ref. [10] for more details). Additionally, a great variation of the bootstrap fragility curves is noted for 
these damage states, as confirmed by the large confidence intervals of the curve parameters. This is explained by the low ratios 
of damage state exceedance observed for the levels of spectral acceleration adopted in this study. The fragility curves are 
restrained only by the lower tail, and a large variation is possible for the rest of the curve (Figures 4b and 4c). To reduce this 
variation, higher levels of spectral acceleration could be used [15]. For this specific case, however, this would mean using 
ground motions of excessively large return periods (> 50,000 years) and selecting records for this order of return period that 
satisfactorily match the GCIM target distribution can be rather challenging [24].  

 
Figure 4: Comparison of fragility curves against bootstrap replications 
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Table 2: Comparison of the median of the fitted fragility curves to the bootstrap confidence interval (values in g) 
Damage state Bootstrap 95% c.i. Gaussian mixture Kernel density Lognormal 
Minimal (0.84, 0.97) 0.89 0.88 0.87 
Repairable (1.95, 4.66) 3.12 3.09 5.13 
Extensive (3.02, 15.28) 4.88 4.62 16.46 
Probable replacement (3.63, >20) 5.22 5.62 4.98 

 

Table 3: Comparison of the dispersion of the fitted fragility curves to the bootstrap confidence interval  
Damage state Bootstrap 95% c.i. Gaussian mixture Kernel density Lognormal 
Minimal (0.39, 0.41) 0.40 0.40 0.41 
Repairable (0.24, 0.63) 0.48 0.50 1.14 
Extensive (0.47, 0.97) 0.61 0.59 1.50 
Probable replacement (0.46, 0.80) 0.58 0.62 0.56 

For the probable replacement damage state, all the MPSDM-based fragility curves showed good agreement to the bootstrap 
fragility curves. In this case, only the columns participate on the system's fragility. Owing to the reasonably good fit of the 
lognormal distribution to the peak column drift ratios, the fragility curves built upon the multivariate lognormal strategy show 
once again a good agreement with the other curves. Although not evidenced in Figure 3, the large variation for this damage 
state is indicated by the wide confidence interval of the median (Table 1). Again, this large variation is justified by fitting the 
fragility curves with low fractions of damage state exceedance. 

From the 10,000 bootstrap fragility curve replications, the corresponding mean annual frequencies of damage state exceedance 
are calculated for each DS𝑖𝑖. A standardization of the MAFs is adopted as follows to facilitate the comparison: 

 𝑧𝑧𝜆𝜆(DS𝑖𝑖) = 𝜆𝜆(DS𝑖𝑖)−𝜆𝜆�(DS𝑖𝑖)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑠𝑠(𝜆𝜆(DS𝑖𝑖)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

 (6) 

where 𝜆𝜆̅(𝐷𝐷𝐷𝐷)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑠𝑠(𝜆𝜆(𝐷𝐷𝐷𝐷)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) are, respectively, the sample mean and standard deviation of the mean annual frequency 
of exceeding the damage state DS𝑖𝑖 from the bootstrap replications. It is, therefore, expected that the bootstrap standardized 
MAF replications are normally distributed with null mean and standard deviation equal to unity. Consequently, considering 
bias as the deviation of the estimated value from the expected (true) value, the bias of each PSDM strategy is here inferred as 
the distance of the standardized MAF from zero.  

Figure 5 presents the histograms of the bootstrap replications of 𝑧𝑧𝜆𝜆(DS𝑖𝑖) along with the standardized MAFs estimated upon each 
MPSDM strategy. For the minimal damage state, the MAF replications are normally distributed. This was expected given the 
low variation of the fragility curves, owing to the appropriate fragility ratios used to fit the curves. The good agreement of all 
the MPSDM-based fragility curves with the bootstrap replications are responsible for the low bias of the corresponding MAFs 
(Figure 5a). For the repairable and extensive damage states, the error introduced by the poor seismic demand density modeling 
is propagated into the MAFs based on the MV-lognormal model. In effect, while the other MPSDM strategies introduced an 
error that is less than one standard deviation, the bias caused by lognormality is greater than four times the standard deviation 
of the bootstrap replications. The histograms of the MAF replications for these damage states present negative skew, which 
could again be explained by fitting the fragility curves with low fractions of DS violation. For instance, in the case of the 
repairable damage state, fragility curves with low dispersion (the lower bound of the confidence interval is 0.24 in Table 3) are 
accompanied by lower medians, generating positive standardized MAF replications, which justify the negative skew (Figure 
5b). The same can be inferred over the extensive damage state, whereas to a lesser extent (Figure 5c). The probable replacement 
damage state presents a multimodal histogram (Figure 5d), which is justified by the too low fragility fractions used to fit the 
curves. In this case, the large median values (> 20 g) of part of the bootstrap fragility curve replications are responsible for the 
negative standardized MAFs. Finally, the close MAFs estimated from GM and kernel smoothing indicate that the nonlinear 
correlation of the demand (which is only modeled by the GM) had a low impact on the risk assessment. 

CONCLUSIONS 

A nonparametric bootstrap approach is proposed to perform inference on the system fragility curves and the corresponding 
estimates of MAF of damage state exceedance for a case-study bridge. In this way, no assumption was made on the distribution 
or correlation of the seismic demand of the bridge components. This work assessed the uncertainties on the fragility analyses 
in a previous study by quantifying the confidence interval of the fragility curves and the potential bias caused by poor density  
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Figure 5: Comparison of standardized MAF estimates to bootstrap replications 

modeling of the investigated MPSDM strategies. Ten thousand bootstrap replications were performed for each damage state, 
which demonstrate that only the estimated values for minimal damage state showed reasonable variability. The greater 
uncertainty observed for the other damage states were caused by the low fragility fractions used to fit the respective fragility 
curves. The large variation was carried into the estimated mean annual frequencies, whose standardized replications deviate 
from a standard normal distribution, especially for the probable replacement damage state. Although these results may be 
indicative of the need for ground motions of greater return periods, they also suggest that the Gaussian mixture model was able 
to capture the uncertainty of the seismic demand, propagating low error into fragility- and risk-based analyses despite the 
limitations relative to seismic intensity levels. The performance of the parametric GM model is comparable to the nonparametric 
kernel smoothing approach. This complementary study, hence, supports the initial perception that the GM model introduces 
lower bias than traditional MPSDM approaches, being a practical option to model the joint density of complex responses on 
multicomponent structures. Finally, the large variability observed for higher damage levels denotes the challenge of performing 
fragility and risk analyses in regions of low to moderate seismicity.  
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