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ABSTRACT 

The 2023 Türkiye–Syria earthquake caused widespread devastation with thousands of fatalities. This study aims to investigate 

the potential of remote-sensing methods in improving post-disaster response efforts, by leveraging advanced technologies such 

as satellite and aerial imagery with geospatial data, computer vision, and machine learning. These techniques include change 

detection through satellite image analysis, regional damage assessment, optimal path planning for multiple unmanned aerial 

vehicles (UAVs), and 3D reconstruction for local damage assessment. The findings of this study highlight the importance of 

incorporating data science and machine learning into disaster response planning, which can lead to an improved and more 

efficient allocation of resources, rapid decision-making in crises, and a more effective overall response. The insights generated 

by this study can inform the development of new disaster management strategies and the design of advanced data science tools, 

leading to better outcomes for communities affected by natural disasters. 

Keywords: Türkiye–Syria earthquake, remote sensing, satellite imaging, change detection, neural radiance fields  

INTRODUCTION 

On February 6, 2023, two major earthquakes with magnitudes of 7.7 and 7.6 (Mw) struck near southern and central Türkiye 

and northern regions of Syria, which were the largest in the region since the 1939 Erzincan earthquake. The official death toll 

had exceeded 57,000, with countless others injured. The twin earthquakes and the aftershocks caused significant damage to the 

region, resulting in more than a million people being left homeless [1]. This disaster revealed several shortcomings in 

construction, infrastructure management, and emergency response systems, despite previous experiences with deadly 

earthquakes, such as the  1999 Gölcük (Marmara) earthquake. 

The rapid evaluation of damage to civil infrastructure after a disaster is essential for prompt emergency response and resource 

allocation [2]. The traditional methods for damage assessment using ground stations are time-consuming and labor-intensive, 

which cannot be fully automated or scaled without having experts on-site [3]. Furthermore, Reconnaissance after an earthquake 

has a significant impact on damage assessment, locating survivors, preventing secondary hazards, accelerating the recovery 

process, and gathering experience about the event [4]. However, current paradigms for reconnaissance are labor-intensive and 

slow, because, in the early stages of the recovery, human resources are often involved in other urgent priorities. In addition, 

manual methods for surveillance can cause further risks for the teams gathering data from inaccessible or hazardous locations. 

Hence, automated reconnaissance provides a more efficient, accurate, and safe way to assess damage and collect data. Data 

science can make this process automated with the use of algorithms to analyze data and develop tools for effective decision-

making.  

The recent advances in machine learning (ML) and data science, demonstrated the efficiency of ML-based methods in damage 

assessments before and after a disaster [5-11]. Since most data-driven damage assessment approaches, require the health state 
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of structures, collecting pre-event data as well as post-event data can enhance the process and provide a baseline for the region 

of interest [12]. In this regard, remote sensing technologies, such as satellites and unmanned aerial vehicles (UAVs), can be 

applied for collecting data on structures and infrastructures in their healthy states. The advances in remote-sensing and aerial 

imagery enabled obtaining high-resolution images within days of a disaster. For instance, the WorldView-2 satellite with 3.7 

days can accelerate regional damage assessment using computer vision and AI for generating building footprints as well as 

damage levels after an event [13]. The prevalent techniques for evaluating building damages with satellite imagery and 

computer vision are done mainly through two streams, segmentation and classification. Several studies have used convolutional 

neural networks (CNNs) to develop desired performance levels for them [14, 15]. As a semantic segmentation task for change 

detection, building damage assessment can be modeled using a CNN-based network that takes in a concatenation of pre- and 

post-disaster satellite images and outputs the changes. Such models can be followed by damage classification at the pixel level 

[16]. Although satellite imagery can be applied to assess damage states after an earthquake at a regional level, it may not provide 

a complete picture of the extent of damage caused by the earthquake.  Therefore. UAVs are still necessary to obtain clear images 

and determine the damage severity. On the other hand, aerial imagery can provide high-resolution close-up images with more 

details for accurate damage assessments, however, it requires optimal flight path planning to collect data from a region without 

collision. This is mainly due to the limited flight time of portable UAVs [17]. 

Metaheuristic algorithms provide an efficient tool for addressing this problem by minimizing overall battery usage, maximizing 

coverage, and taking into account various constraints, such as preventing no-fly zones, collision avoidance, and limited flight 

time [18]. Several algorithms have been devised in this regard, which is generally categorized into three main classes: 

Evolutionary (e.g., GA and CMA-ES [19-22]), Swarm Intelligence (e.g., PSO and WSA [23-26]), and Physics-based (e.g, SA  

and TEO [27, 28]) the traveling salesman problem algorithms.  

Following the recent devastating earthquakes in Türkiye, it was noted that the condition of buildings may significantly change 

over a short time after an earthquake due to the failure of structural components. For example, severely damaged multi-story 

buildings collapsed days after the main shock, such as a new six-story building in Malatya. Thus, there is a need to develop 

novel approaches for continuously collecting data at varying resolutions, taking into account the state of the buildings. To 

address this issue, a multi-fidelity and multi-level approach can be adopted, which would gather data at different resolutions 

and over time. Moreover, during earthquakes, people's safety is at risk, making it crucial to develop models that are trustworthy 

and dependable. For regulatory approval, these models must be explainable, and their predictions must be accurate, ensuring 

that the model features are sensible. Despite extensive research in the area of data science for damage assessment, only a few 

models, such as YOLO and NeRF, are suitable for real-world post-disaster applications. Therefore, further investigation is 

necessary to develop practical outputs, including real-time damage detectors and 3D reconstruction techniques.  

METHODOLOGY 

Overview of the proposed method 

This study proposes a multi-fidelity reconnaissance methodology for a rapid post-disaster response, which is illustrated in 

Figure 1. As can be seen, firstly the satellite images before and after the earthquake are investigated using specific data-driven 

models to get a raw estimate of the damaged regions, buildings, and infrastructures. In the second level, the initial route of a 

UAV or a set of UAVs is determined automatically to get higher-resolution videos of possible damages. An example of paths 

optimized for a set of four UAVs is shown in Figure 1. In this Figure, the UAVs – shown in distinct colors – start from the 

starting point and pass the optimal route over the buildings. This problem can be considered a variation of a well-known 

traveling salesman problem (TSP) in mathematics, where UAVs and buildings represent travelers and cities, respectively.  

Recording the data, either the frames extracted from the collected videos or the video files, are directly fed to the classifier 

machine learning models to perform an initial estimation. This level is necessary in the cases that the satellite images are 

unavailable or the view is obstructed by clouds or smog. The flight speed in this level is considered high because it is 

supplementary to the previous level. In the third level, the low-fidelity assessment results of the previous levels besides the 

available information about the buildings are put together to mathematically model and optimize the flight route of UAVs. It 

should be noticed that, unlike the previous path planning which provides a coarse assessment, at the final level, the speed and 

path of UAVs must be tuned for high-fidelity assessments such as 3D reconstructions. Collecting the high-fidelity data, the 

assessment is performed through machine learning or machine-human collaboration methods. 
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Figure 1. The proposed multi-fidelity reconnaissance methodology. 

Level 1: Change detection using satellite imagery 

Along with the advancement of machine learning techniques, autonomous approaches for change detection (CD) using satellite 

imagery have been developed, which can reduce the time and effort required for manual on-ground interpretations [29]. In the 

context of regional damage assessment, change detection can be used to detect and classify changes in building conditions by 

comparing the images before and after a disaster, such as earthquakes, floods, and tornados. This approach can provide valuable 

information for emergency responders and aid organizations to prioritize their efforts and allocate resources more efficiently. 

Machine learning models such as convolutional neural networks (CNNs) have shown promising results in building damage 

assessment using satellite imagery for change detection [30]. In this study, a Bitemporal Image Transformer (BIT) model was 

utilized to detect changes using satellite images before and after a disaster. To maximize the performance of the change 

detection task, the BIT uses the strength of transformers as well as the CNNs [29].  

 

Figure 2. Illustration of the bi-temporal image transformer model [29]. 

The core component of transformers is the ‘attention’ mechanism.  A transformer is based on two main integral components: 

‘self-attention’ and ‘pre-training’. The former allows a transformer model to capture ‘long-range’ dependencies between 

sequences of features. A self-attention mechanism tries to estimate the interaction between all 𝑛 entities of a sequence 𝑋 ∈
ℝ𝑛×𝑑 by encoding them in terms of global information, where 𝑑 is the embedding dimension (e.g., which damage types would 

come together in an image from a structure). This can be achieved by first projecting the input sequence 𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

onto triplet of learnable matrices, Queries 𝑾𝑄 ∈ ℝ𝑑𝑥×𝑑𝑞, Keys 𝑾𝐾 ∈ ℝ𝑑×𝑑𝑘, and Values 𝑾𝑉 ∈ ℝ𝑑×𝑑𝑣; and fed into a scale-

dot attention mechanism as follows [31]:  

 𝒁 = softmax (
𝑸𝑲𝑇

√𝑑𝑞
) 𝑽 (1) 

 

      

Level 1:  

- Satellite imagery 

- Regional damage assessment 

Level 2:  

- Overhead flight path-planning 

- Low-fidelity data collection 

- Initial damage assessment 

 

Level 3:  

- Multi-view flight path-planning 

- High-fidelity data collection 

- Accurate damage assessment 

NeRF 
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where, 𝑸 =  𝑿𝑾𝑄, 𝑲 =  𝑿𝑾𝐾, 𝑽 =  𝑿𝑾𝑉, and 𝒁 ∈ ℝ𝑛×𝑑𝑣. 

Single-head attention mechanism (Figure # (left)) has limitations in encapsulating multiple important relationships at the same 

time. To tackle this issue, a multi-head self-attention mechanism uses parallel attention layers to project the input onto different 

representation subspaces with their learnable query, key, and value matrices  {𝑾𝑄𝑖 , 𝑾𝐾𝑖 , 𝑾𝑉𝑖}𝑖=1
ℎ . In greater detail, for a given 

input 𝑿: 

 𝑸𝒊 =  𝑿𝑾𝑄𝑖, 𝑲𝒊  =  𝑿𝑾𝐾𝑖, 𝑽𝒊  =  𝑿𝑾𝑉𝑖 (2) 

 𝒁𝒊 = softmax (
𝑸𝒊𝑲𝒊

𝑇

√𝑑𝑞
) 𝑽𝒊 (3) 

 𝒁 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝒁𝟎, 𝒁1, … 𝒁ℎ−1)𝑾𝑜 (4) 

where, 𝑾𝑜 is the projection weight and 𝑾𝑜 ∈ ℝ^(ℎ. 𝑑𝑣 × 𝑑) 
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Figure 3. Self-attention mechanisms: Scaled dot-product attention (a) and multi-head attention (b) 
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Figure 4. Self-attention mechanism in computer vision [31]. 

Level 2: Path-planning for UAV 

Based on the acquired data from the previous level, the UAV route needs to be determined for autonomous data collection. 

This problem could be considered a multi-TSP problem, which contains three steps: identifying the region of interest (ROI), 

clustering the buildings in the region, and path planning for each UAV from the same starting point (Figure 5). 
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Figure 5. Multi-UAV path-planning from the same take-off location. 

At this level, locations that require high attention, including near-fault structures, areas with landslides, infrastructures, and 

facilities related to health and safety, must be given higher priority. Therefore, a set of UAVs are assigned to each ROI, which 

can be formulated as a clustering problem, which is addressed by partitioning the ROI into multiple subregions. The number 

of UAVs available and their capabilities - maximum flight time, resolution, flight height, - are the main constraints to be 

considered. Well-established clustering techniques, such as spectral partitioning [32], k-means [33], and k-means++ [34], are 

employed in identifying a suitable range of subregions. In the following, the pseudocode of the k-means algorithm for this 

problem is presented: 

Algorithm 1: k-means algorithm for optimal clustering of building footprints 
Input: Building footprints, number of UAVs 

Initialize: Randomly select the centroids equal to the number of UAVs (k) 

While the centroid positions are not converged:  

a) Calculate the distance of each building from the centroids 

b) Assign each building to the nearest centroid 

c) The buildings assigned to each centroid create a cluster 

d) Move the position of centroids to the mean of the position of corresponding buildings 

Output: The final clustering 

When the clusters are defined, each UAV is assigned to its corresponding partitioned subregion, and an optimization problem 

is applied to discover the optimal flight path for each UAV. In this regard, a variation of the TSP is solved; however, TSP 

belongs to NP-hard problems, for which there is no quick and efficient solution algorithm [35, 36]. Metaheuristics are applied 

here to reach a reasonably good solution in a short time. For instance, GA, as an evolutionary metaheuristic, with a permutation 

operator is a proper choice to find optimal or near-optimal routes. The pseudocode of the GA for TSP is provided in the 

following: 

Algorithm 2: TSP algorithm for multi-UAV path-planning 
Input: Population size, the maximum number of generations, crossover rate, and mutation rate 

Initialize: Generate initial tours randomly. 

1. Evaluate the flight time of each tour using the traveled distance. 

2. Sort the population based on fitness. 

3. Select the best tours for the next generation. 

4. While the number of iterations is less than the maximum number of generations:  

a) Create new tours by performing permutation crossover on the selected tours. 

b) Apply random mutation on the newly created tours. 

c) Evaluate the cost of the new tours. 

d) Combine the new tours with the original population and sort them based on fitness. 

e) Select the best tours to survive into the next generation. 

Output: The best solution found during the search process 
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Level 3: NeRF-based 3D reconstruction  

Over the past decade, novel methods have been introduced to perform 3D reconstruction using Structural-from-Motion (SfM). 

The main stages in 3D reconstruction using SfM are feature extraction, feature matching, geometric verification, and structure 

and motion reconstruction [37]. Recently, Neural Radiance Fields (NeRFs) were introduced by Mildenhall et al. [38] for 

synthesizing photo-realistic 3D reconstruction of complex scenes using 2D images. NeRFs are state-of-the-art data-driven 

approaches that learn to represent a 3D scene as a continuous function, and thus they are different from the traditional methods 

that require manual texture mapping and lighting. In contrast to the traditional 3D reconstruction methods, NeRFs do not rely 

on geometric primitives, such as triangles and voxels; instead, they train a neural network to directly model the scene’s 

appearance. As a result, NeRFs have emerged as a promising method for generating highly accurate and realistic 3D digital 

scenes and have been successfully applied to a wide range of applications [6, 39]. At its core, a NeRF model represents a 3D 

scene as a radiance field that describes the color and volume density of the scene from every view angle [6], which can be 

written as: 

 𝐹(𝒙, 𝜃, 𝜙) → (𝒄, 𝜎) (5) 

where 𝒙 in the in-scene coordinate,  𝜃 is the azimuthal view angle, and 𝜙 is the polar view angle. 𝒄 and 𝜎 are the color and 

density. A multi-layer perceptron (MLP), denoted as 𝐹Θ in Figure 5, can approximate this 5D function. 

 

Figure 6. The NeRF volume rendering and training pipeline [38]. 

RESULTS AND DISCUSSIONS  

The before-after satellite imagery, obtained from MAXAR [40, 41], was used for change detection to identify damaged 

buildings. The Bitemporal Image Transformer (BIT) model was employed to detect changes in building conditions before and 

after the 2023 Türkiye-Syria earthquake. The BIT model utilized a combination of transformers and CNNs to maximize the 

performance of the change detection task. The results in Figure 7 show that the model was effective in detecting changes in 

building conditions, and the damaged buildings were successfully identified.  

 

Figure 7. Regional damage assessment using change detection based on before-after satellite images. 

Damaged buildings 

İslahiye, Gaziantep, Türkiye 

Oct 4, 2022 

İslahiye, Gaziantep, Türkiye 

February 7, 2023 
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The change detection approach using satellite imagery can provide valuable information for emergency responders and aid 

organizations to prioritize their efforts and allocate resources more efficiently. Based on the footprints obtained for the region 

of interest, the machine learning-based approach was utilized to find the optimal flight paths for UAV-based data collection. 

The three phases of the aerial imagery are shown in Figure 8, which include identifying the region of interest, clustering the 

building in the same neighborhood, and path planning for multiple UAVs. In this paper, The genetic algorithm was used for 

solving the traveling salesman problem, to minimize the length of the path. Specifically, we have considered the order of homes 

to be visited by the UAVs as decision variables and path length as the objective function. Each UAV is assigned to 

autonomously collect data from a subregion, for which the optimal path is found. As shown in this figure, the proposed approach 

could efficiently generate multiple routes for UAV-based inspection and data collection.   

 
Figure 8. Optimal path-planning for multiple UAVs based on building footprints. 

Türkiye has modern building codes, and many buildings in the southeastern province of Malatya’s Bostanbaşı neighborhood 

(newly constructed luxury residences) did not collapse during the first earthquakes. However, many buildings suffered severe 

damage that led to the collapse during the second earthquake and the aftershocks. In this study, a NeRF-based algorithm was 

developed to reconstruct a 3D scene using a video captured by a UAV [42]. The 3D reconstruction using NeRF is shown in 

Figure 9, which highlights the capabilities of NeRF-based models in 3D scene reconstruction over the other traditional methods 

such as photogrammetry (Figure 9-(a)).  The algorithm was able to capture the complex geometry of the scene with fine details 

while maintaining the texture of the buildings. The reconstructed scene also demonstrates accurate lighting and shading that 

results in photorealistic, coherent, and consistent results. It should be noted that NeRF-based models are also computationally 

expensive and require further research in optimizing the models for more efficient 3D reconstruction in real-world applications 

such as post-earthquake damage assessment and planning.  

  
(a) (b) 

  
(c) (d) 

Figure 9. Results of the 3D reconstruction: (a) SfM method (camera poses shown in red), (b)-(d) NeRF method. 

CONCLUSIONS 

This study aims to provide a multi-fidelity reconnaissance approach for a rapid post-disaster response. The methodology 

consists of three levels. Firstly, satellite images before and after the disaster are analyzed using state-of-the-art data-driven 

models to estimate regional damages. Secondly, the initial route of a UAV or a set of UAVs is determined automatically to 

obtain videos of damaged buildings within a neighborhood. Finally, the low-fidelity assessment results of the previous levels 

and information about the buildings are put together to mathematically model and optimize the flight route of UAVs to perform 

Region of interest Clustering buildings Multi-UAV path-planning 
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high-fidelity assessments such as 3D reconstructions. In Level 1, a Bitemporal Image Transformer (BIT) model is utilized for 

change detection using satellite imagery. In Level 2, a pipeline is proposed for optimal path planning, which includes identifying 

the region of interest, clustering the buildings in the region, and path planning for UAVs. Ultimately, in Level 3, Neural 

Radiance Field (NeRF)-based approach was proposed to obtain a photorealistic and accurate 3D reconstruction of specific 

buildings. The proposed multi-fidelity reconnaissance has demonstrated efficiency in achieving the desired outcome and has 

the potential to revolutionize post-disaster damage assessment and rapid response.  
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