
Page 1 of 9 

 

 A NEW FLEXIBILITY-BASED INDEX FOR DAMAGE 
IDENTIFICATION IN LINEAR-SHAPED STRUCTURES 

Afsaneh NAZARI 
M.Sc., Department of Civil Engineering, Aryan Institute of Science & Technology, Iran 
raamsa.nazari@gmail.com 

Ali ZARE HOSSEINZADEH  
Graduate Student, School of Civil Engineering, Iran University of Science & Technology, Iran 
a.hh.hoseinzade@gmail.com 

Gholamreza GHODRATI AMIRI 
Professor, School of Civil Engineering, Iran University of Science & Technology, Iran  
ghodrati@iust.ac.ir 

ABSTRACT: Early damage detection in engineering structures has an important role in Structural Health 
Monitoring (SHM) to prevent some calamitous events. In this paper, a new method for damage 
identification in linear-shaped structures is presented. Linear-shaped structure is defined as a structure 
that its elements can be arranged only on a straight line. By using Grey System Theory (GST) and 
flexibility curvature, a new index is introduced for damage prognosis. GST has been developed for 
inspecting the correlation between two regular sequences by a geometrical-based comparison with a 
reference sequence that is weak with limited measured data. The applicability of the presented method is 
demonstrated by studying several damage patterns on two numerical examples of linear-shaped 
structures, named shear frame and beam. In addition, to generalize the applicability of the suggested 
method for real SHM programs, the modal data are contaminated by some random noises and the 
presented method is employed for damage identification. Moreover, the impact of the number of available 
modal data on calculating flexibility matrix is investigated. The obtained results emphasize the robustness 
of the presented method for damage identification in linear-shaped structures.  

1. Introduction 

Structural damage prognosis is the most important part of Structural Health Monitoring (SHM) programs, 
which is devoted for identifying damage in structural systems. Early damage detection not only can 
prevent some calamitous events, but also it can decrease additional costs for repairing structures. 
Researches try to identify structural damage by practical approaches and in this regard, different methods 
were proposed in the literature. Despite major differences among different damage identification methods, 
all of them are based on analyzing structural feedbacks. Analyzing vibrational characteristics of the 
monitored structure is one of the well-known strategies for damage identification. Generally, damage is 
defined as some deterioration in physical properties of a structure. On the other hand, vibrational 
characteristics, such as natural frequencies and related mode shape vectors, depend on the physical 
properties of the monitored structure. Therefore, by studying vibrational properties, we can find valuable 
information about structural damage. A complete review of vibrational-based methods can be found in 
(Fan and Qiao, 2011). Some methods use signal processing approaches for damage localization (Kim 
and Melhem, 2004; Bagheri, Ghodrati Amiri and Seyed Razzaghi, 2009; Ghodrati Amiri, Jalalinia, Zare 
Hosseinzadeh and Nasrollahi, 2015). These methods employ mathematical decomposition approaches 
for extracting the main sensitive features of the vibrational feedbacks to structural defects. Goyal and 
Pabla (2015) presented a complete review of these approaches. 
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Other type of damage prognosis methods try to localize structural damage by direct mathematical-based 
strategies (Bernal, 2006; Catbas, Gul and Burkett, 2008; Yan, Ren and Huang, 2012; Yan, Dyke and 
Irfanoglu, 2012; Ghodrati Amiri, Zare Hosseinzadeh, Bagheri and Koo, 2013). Ndambi, Vantomme and 
Harri (2002) studied different damage indices, which utilized eigen-frequencies and/or mode shape 
derivatives and compared their ability for damage localization in reinforced concrete beams. They made a 
conclusion about good performance of the strain energy method for damage assessment. Xia and Hao 
(2003) proposed a statistical-based index for damage identification via natural frequency changes. 
Limongelli (2011) localized damages in frames by interpolating the operational mode shapes via spline 
function. Yan, Ren and Huang (2012) introduced modal strain energy as a damage-sensitive parameter 
and used it by considering statistical concepts for damage identification in beams. 

Despite the good performance of the above-mentioned methods, researchers try to present simple and 
practical methods, which can localize structural damage using as few as possible input data. This paper 
presents a new method for damage localization by introducing a novel damage index based on flexibility 
curvature and Grey System Theory (GST). By utilizing GST, we can judge about geometrical correlation 
between two vectors. Finally, the presented method is verified by studying different damage patterns on a 
fifteen-story shear frame. Moreover, we generalize this method for damage identification in beams by 
considering only the translational degrees of freedom (DOFs) which can be interpreted as a condition in 
which an incomplete set of modal data are used for SHM. Results show the good and acceptable 
performance of the proposed method for damage localization in linear-shaped structures. 

2. Grey System Theory 

Grey System Theory employs a geometrical-based comparison for measuring amount of correlation 
between two regular sequences, especially, when weak and limited measured data are available (Deng, 
1989). GST reflects the degree of approaching two geometrical curves by calculating Grey Relation 
Coefficients (GRCs). It is clear that the bigger coefficients show a big approaching between the baseline 
and the test sequences. 

Consider the reference sequence (A0) and the test sequence (At) as below: 

 0 0 0 0(1), (2),..., ( )
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where a0(n) and at(n) are n-th points on the geometrical curves. GRCs can be calculated as follows: 
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in which ηi(n) is GRC in the n-th point. α is defined as distinguishable coefficient which is a number 
between 0 and 1, and in this study, we select α=0.5. In addition, β is the grey variant as follows: 

0 ( ) ( )ta n a n                                                                                                                                       (4) 

Generally, ηt(n)>0.9 shows a complete relation between the reference point and the test point. More 
details about GST can be found in (Fu, Zheng, Zhao and Xu, 2001; Zare Hosseinzadeh, Bagheri and 
Ghodrati Amiri, 2013). It is worth noting that GST is used for damage identification in few static-based 
methods (Chen, Zhu and Chen, 2005; Abdo, 2012). Recently, Zare Hosseinzadeh, Bagheri and Ghodrati 
Amiri (2013) used it for damage localization and quantification by analyzing the first mode shape slope as 
a vibrational characteristic, which is sensitive to structural damage. 

3. Proposed Method 

This section presents details of the proposed method for damage localization in linear-shaped structures. 

Generally, a linear-shaped structure is defined as a structure in which all elements can be arranged only 
on a straight line. In other words, each member or each element of a linear-shaped structure is introduced 



Page 3 of 9 

by two nodes and each node has only one DOF. Shear frame is the best example of linear-shaped 
structures in which each story can be defined as an element. By considering these conditions, the free 
vibration problem for a structure with N DOFs and Ne elements can be presented as below: 

i i iKφ Mφ                                                                                                                                           (5) 

where K and M are global stiffness and mass matrices, respectively. In addition, λi and φi are the i-th 
eigenvalue and related eigenvector, respectively. It should be noted that the vector φi is normalized with 
respect to the global mass matrix. 

By utilizing the first m modes’ data (i.e. the first m eigenvalues and related eigenvectors), the flexibility 
matrix (Fm) can be estimated as follows: 

1 T

m

F ΦΟ Φ                                                                                                                                           (6) 

in which Ф is a matrix of the first m modes’ eigenvectors and O is a diagonal matrix that is defined as 
below: 
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This paper employs diagonal members of the flexibility matrix before and after damage for introducing a 
new damage localization index. We can calculate the flexibility matrix using the first m modes’ data for 
intact structure (Fm

u) and damaged structure (Fm
d), using Eq. (6). Then, we define vectors vu and vd by 

considering the diagonal members of the Fm
u and Fm

d as follows: 

 (1,1) (2,2) ... ( , ) ... ( , )
T

u u u u u
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These two vectors can represent intact and damaged states. As mentioned before, this paper is aimed at 
proposing a damage localization index based on the numerical calculation of the vector curvature. In this 
study, the Finite Central Differentiation Procedure is employed for numerical calculation of curvature. This 
procedure can be defined as: 
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where Li is the distance between i-th and (i+1)-th nodes. By applying the GST, we can measure amount 
of correlation between the calculated curvature vectors. For this purpose, the curvature vectors of the 
intact structure (vu) and damaged structure (vd) are considered as reference and test sequences, 
respectively. Then, the GRCs are calculated based on the presented approach in the previous section: 

 (1) (2) ... ( ) ... ( )
T

t t t ti N   GRC                                                                                (11) 

Finally, for each point, the proposed damage index (DI) is defined as: 
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where Ωi is the i-th member of the Ω which is presented as below: 

. Ω 1 0 GRC                                                                                                                                       (13) 
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As mentioned before, this method is applicable to linear-shaped structures. The performance of the 
proposed damage index can be summarized as below: 

Each member or element of a linear-shaped structure has two nodes and for each node, we can calculate 
the suggested damage index (DI) based on the presented approach. The i-th element will be introduced 
as a damaged element if both calculated DI are so close to 1.0. It is worth noting that if one of the 
element’s nodes were fixed by support, in this case the calculated DI in the free node will be used for 
judging about its health. 

In the following, the efficiency of the proposed method is demonstrated by studying several damage 
patterns on two numerical examples of linear-shaped structures. 
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Fig. 1 – Fifteen-story shear frame 

 

Table 1 – Physical properties of fifteen-story shear frame. 

Story No. Mass (ton) Stiffness (MN/m) 

1~5 60 6.0 

6~10 45 6.0 

11~15 25 4.5 

 

Table 2 – Damage patterns in the fifteen-story shear frame. 

Damage pattern  Damage location Damage Severity (%) 

(1) Story 7 15 

(2) Stories 9, and 15 5, and 25 

(3) Stories 4, 8, and 12 20, 20, and 10 
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Fig. 2 – Flexibility matrix and its change for intact and damaged shear frames (third pattern)  
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Fig. 3 – Damage detection results of shear frame using the first mode’s data 

 

4. Numerical Examples 

4.1. A Fifteen-Story Shear Frame 

In the first example, a fifteen-story shear frame is considered (Fig. 1). The physical properties and the 
studied three damage patterns are listed in Tables 1 and 2, respectively. It should be noted that these 
damage patterns are simulated by reducing the stiffness of the damaged stories, based on the defined 
damage levels. The calculated flexibility matrix using only the first mode’s data, for intact and damaged 
structures (based on the third damage pattern), and the changes between them (∆F1) are shown in Fig. 2. 
From this figure, it is obvious that although there is not any distinguishable difference between the 
flexibility matrices in the damaged and undamaged states, we can find some irregularity in the ∆F1. This 
irregularity is sensible in the diagonal members. Therefore, it can be concluded that inspecting amount of 
correlation between diagonal members of the flexibility matrix in damaged and undamaged states can be 
a damage-sensitive parameter. 
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Fig. 4 – Damage detection results of shear frame using the first three mode’s data 

 

In the following, we apply the presented method for damage identification in the mentioned three damage 
cases using only the first and the first three modes’ data. The obtained results for an ideal case (noise 
free state) are shown in Figs. 3 and 4 for three damage patterns. By inspecting these results, it can be 
concluded that the presented method is able to localize simulated damages with high level of accuracy 
and by increasing the number of utilized modes’ data for calculating flexibility matrix; the index can 
perform precisely, especially in the healthy members. 

Despite the good performance of the presented method in ideal case, for generalizing its applicability in 
real SHM programs, we should examine it when the input data are polluted with some random noises. 
This issue is studied by contaminating the natural frequencies with 5% uniformly distributed random 
noises. Fig. 5 shows the obtained results for such a condition in which the problem is solved by 
considering only the first mode’s data. Similar to the noise free state, the results indicate the good 
performance of the presented method for defect localization in the presence of random noises. 

4.2. Simply Supported Beam  

This example is devoted to generalize the presented method for damage identification in another type of 
linear-shaped structures, named beams. For this purpose, a simply supported beam is considered. Based 
on Fig. 6, the finite element model of this structure consists of ten elements and nine free nodes, with two 
DOFs in each node. The physical properties of this structure are as below: Modulus of elasticity E=25 
GPa, and mass density ρ=2500 kg/m3. In addition, cross sectional area and the moment of inertia of 
elements are A=0.35 m2, I=0.01429 m4, respectively. 

To generalize the presented method for damage localization in beams, we should reduce the structural 
model in a way that only one DOF is allotted to each node. By this modification, not only can we use the 
presented method for damage prognosis in beams, but also we can apply method to such SHM programs 
in which only a limited number of sensors were installed on the beam. We use Guyan static reduction 
method (Guyan, 1965) for applying above addressed modification. Guyan’s method is based on 
separating mass and stiffness matrices to sub matrices related to the slave and master DOFs. Readers 
can find more details about this method in (Guyan, 1965). Therefore, we can use presented DI for health 
monitoring of beams when structural model is reduced by considering only the translational DOFs. 
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Fig. 5 – Damage detection results of shear frame using the first mode’s data with 5% noise 
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Fig. 6 – Finite element model of simply supported beam  

 

Table 3 – Damage patterns in the simply supported beam. 

Damage pattern  Damage location Damage Severity (%) 

(1) Element 5 25 

(2) Elements 1, and 6 15, and 10 

 

In this section, the applicability of the presented modification is investigated by simulating two damage 
patterns on the introduced simply supported beam. The details of these patterns are summarized in Table 
3. First pattern consists of a single damage scenario and the second one is devoted for simulating 
multiple damage case. The obtained results for noise free state are shown in Fig. 7. In this study, the 
flexibility matrix is calculated by employing only the first mode’s data. As mentioned in Section 3, the 
proposed DI will be so close to 1.0 in the free nodes of the damaged elements. Here, we peruse obtained 
results for the damage pattern (2), for instance. Based on the obtained results, DI for the first, fifth and 
sixth nodes are so close to 1.0. The first element has only one free node and therefore, this element is 
considered as a damaged element. In addition, both calculated DI for the free nodes of the sixth element 
are close to 1.0 and as a result, this element is reported as a damaged element. Therefore, the good 
performance of the presented approach for damage identification in beams can be concluded. 
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Fig. 7 – The obtained results for two damage patterns of simply supported beam  
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Fig. 8 – The obtained results for two damage patterns of simply supported beam with 5% noise 

 

In addition, Fig. 8 shows the obtained results for a condition in which 5% random noises are added to 
input data. Results emphasize the viable applicability of the presented method for damage identification. 
Moreover, by considering the presented modification, we can introduce the proposed method as a 
powerful strategy for damage identification, when a limited number of sensors were installed on the 
beam. 

5. Conclusions 

In this paper, a new method for damage localization in linear-shaped structures was presented. Linear-
shaped structures is defined as a structure that its elements can be arranged only on a straight line. By 
applying Grey System Theory on the flexibility curvature, a new damage index was introduced. The 
applicability of the proposed method for damage localization was investigated by studying three different 
damage patterns on a fifteen-story shear frame. Moreover, the presented method was generalized for 
damage identification of beams when only the translational DOFs were considered. Obtained results 
emphasized the good and stable performance of the proposed method for defect localization and 
introduced it as a powerful method for damage identification in linear-shaped structures.  
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