C S C E The Canadian Society f	for Civil Engineering, Vancouver Section
THE RESPONSE SPECTRUM	Response Spectrum Analyses of Bridges to S6-06
	Don Kennedy, M.Eng., P.Eng. Manager, Bridge Engineering Associated Engineering
A Technical Seminar on the Development and Application of the Response Spectrum Method for Seismic Design of Structures	
	1-2 June 2007 Vancouver, BC

Outline	3
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
6. Analyses and Load combinations	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Saturday, Case Studies)	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kenned	v

S6 - 06 SEISMIC DESIGN - GENERAL	4
 S6 - 06 SEISMIC DESIGN - GENERAL Applies to typical highway bridges (as in AASHTO LRFD) Special bridges (arches, cable-stayed and large trusses) require special studies and shall be designed using seismic principles to achieve a level of safety consistent with the code 	4
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007	dv

S6 - 06 SEISMIC DESIGN – GENERAL (CI. 4.4.1)

- 1. Specify bridge **importance** (hence seismic performance objectives, Cl. 4.4.2)
- 2. Assess seismic hazard at site (4.4.3)
- 3. Determine if bridge is "irregular"
- Determine Seismic Performance Zone (4.4.4) affects analysis methods, design forces, and detailing requirements
- 5. Perform **Analyses** for elastic horizontal seismic forces (4.4.5 through 4.4.7)
- 6. Derive modified design forces for proportioning *ductile substructure* elements (4.4.8 and 4.4.9)
- 7. Determine forces on *capacity protected* elements

Don Kennedy

- 8. Detail the components
- 9. [Confirm / validate]

The Response Spectrum - CSCE Vancouver Section 1-2 June 2007

S6-06: Force – based design methodology · Emphasis is on elastic and modified design forces Little attention paid to deformations Important deformations are seat lengths and within the structural elements and foundations, not the expansion joints (do not recommend seismic deformations govern joints) Analyses employed are very approximate Capacity design principles generally de-sensitize the design from approximations in analyses for many bridges Not necessarily as true for complex bridges or buildings Analyses become more important for retrofit of existing bridges where difficult economic choices are made The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kennedy

Outline 7
1. General application
2. Seismic hazard
3. Spectra
4. Bridge types
5. Modeling (global, local)
6. Analyses and Load combinations
7. Design Forces
8. Displacements
9. Some limitations of RSA
10. Displacement based analysis and design
11. Application to design (Saturday, Case Studies)
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kennedy

Seismic hazard	8
 Zonal acceleration (A) shall be determined either Table A3.1.1, or from Table 4.1, using the PHA specified in Figure A3.1.6 or as provided by the Geological Survey of Canada using the seismic hazard methodology used to generate Figure A3.1.6 MoT (British Columbia) Supplement to S6-00 requires the use of PHA as obtained from PGC in lieu of "A" 	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kenner	łv

Seismic hazard;	Table 4.1		9
		Seismic p	erformance zone
Range of PHA (g) for 10%			
probability of exceedance	Zonal acceleration	Lifeline bridges	Emergency-route and
in 50 years (From Figure A3.1.6)	ratio, A		other bridges
0.00 <pha<0.04< td=""><td>0</td><td>2</td><td>1</td></pha<0.04<>	0	2	1
0.04<=PHA<0.08	0.05	2	1
0.08<=PHA<0.11	0.1	3	2
0.11<=PHA<0.16	0.15	3	2
0.16<=PHA<0.23	0.2	3	3
0.23<=PHA < 0.32	0.3	4	4
0.32 or greater	0.4	4	4
The Response Spectrum - CSCE Vanc	ouver Section 1-2	2 June 2007	Don Kennedy

Outline	10
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
6. Analyses and Load combinations	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Saturday, Case Studies)	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kenned	v

1 30-00	& AASHTO, I – 3, III	
	CSA S6-00 or S6-06	AASHTO LRFD-94
Multi-column Bent	C _{sm max} = 2.5 A I = 2.5(0.2)(3.0) = 1.50	$C_{sm max} = 2.5 A$ = 2.5(0.2) = 0.50
-	R = 5.0	R = 1.5 (Critical bridge)
	C _{sm max} /R = 1.5/5.0 = 0.30	C _{sm max} /R = 0.50/1.5 = 0.33
	= 0.30	= 0.33
The Response Spectrun	n - CSCE Vancouver Section 1-2 June	2007 Don Kennedy

Importance factor "I" : S6-06 & AASHTO, I = 1.5			16
	CSA S6-00 or S6-06	AASHTO LRFD-94	7
Single column pier	$\begin{array}{l} C_{\text{sm max}} = 2.5 \; \text{A I} \\ = 2.5(0.2)(\textbf{1.5}) = \textbf{0.75} \end{array}$	$C_{sm max} = 2.5 A$ = 2.5(0.2) = 0.50	
	R = 3.0	R = 2.0 (Essential bridge)	
	$C_{sm max} / R = 0.75/3.0$ = 0.25	C _{sm max} /R = 0.50/2.0 = 0.25	
Abutment	$C_{sm max} = 2.5 \text{ AI}$ = 2.5(0.2)(1.5) = 0.75	$C_{sm max} = 2.5 A$ = 2.5(0.2) = 0.50	
	R = 1.0	R = 1.0	1
	C _{sm max} /R = 0.75/1.0 = 0.75	C _{sm max} /R = 0.50/1.0 = 0.50	
·			_
The Response Spectrum	n - CSCE Vancouver Section 1-2 June	2007 Don Kenned	V

	CSA S6-00 or S6-06	AASHTO LRFD-94
Single column Pier	$\begin{array}{l} C_{\text{sm max}} = 2.5 \; \text{A I} \\ = 2.5(0.2)(\textbf{3.0}) = \textbf{1.50} \end{array}$	$C_{sm max} = 2.5 A$ = 2.5(0.2) = 0.50
	R = 3.0	R = 1.5 (Critical bridge)
	C _{sm max} /R = 1.5/3.0 = 0.50	C _{sm max} /R = 0.50/1.5 = 0.33
Abutment	$C_{sm max} = 2.5 \text{ AI}$ = 2.5(0.2)(3.0) = 1.50	$C_{sm max} = 2.5 A$ = 2.5(0.2) = 0.50
	R = 1.0	R = 1.0
	C _{sm max} /R = 1.50/1.0 = 0.50	C _{sm max} /R = 0.50/1.0 = 0.50

Outline	24
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
6. Analyses and Load combinations	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Saturday, Case Studies)	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007	vr

Bridge ty	pes	25
1.	Regular?	
2.	Irregular?	
3.	Reference to clause 4.4.5.3.2 and corresponding table	
4.	Intention is based on AASHTO, such that comparison of analyses match more rigorous analyses in most cases	
5.	Affects type of analyses	
6.	Multi-mode RSA not too onerous even for regular bridges	
7.	Hand calculation checks give good agreement for regular bridges	
The Response Spec	trum - CSCE Vancouver Section 1-2 June 2007 Don Kenned	v

	Lifeline	Emergency-route	Other
Small to moderate earthquake	All traffic Immediate use	All traffic Immediate use	All traffic Immediate use
Design earthquake (475 year return period)	All traffic Immediate use	Emergency vehicles Immediate use	Repairable damage
Large earthquake (e.g. 1000 year return period)	Emergency vehicles Immediate use	Repairable damage	No collapse

Outline		27
1.	General application	
2.	Seismic hazard	
3.	Spectra	
4.	Bridge types	
5.	Modeling (global, local) (Discuss Saturday)	
6.	Analyses and Load combinations	
7.	Design Forces	
8.	Displacements	
9.	Some limitations of RSA	
10	Displacement based analysis and design	
11	Application to design (Saturday, Case Studies)	
The Response Spec	trum - CSCE Vancouver Section 1-2 June 2007 Don Kennedy	/

Outline	36
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
 Analyses and Load combinations (More Saturday) 	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Saturday, Case Studies)	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kenner	dv

1-2 June 2007

Don Kennedy

The Response Spectrum - CSCE Vancouver Section

							38
Analysis R	equiremer	nts for Mi	ultispa	n Bridç	ges (Ta	able 4.2)
Seismic Performance	Lifeline Bridge	S	Emergen Bridges	icy-route	Other Br	idges	
Zone	Regular	Irregular	Regular	Irregular	Regular	Irregular	
1	Not Applicable	Not Applicable	None	None	None	None	
2	мм	мм	UL	мм	UL	SM	
3	мм	тн*	мм	мм	UL	мм	
4	мм	тн∗	мм	мм	SM	мм	
*Note: Re mu apj	quires appro Iltimode me propriate fo	oval. The thod may r certain c	use of be dee ases.	the med			
The Response Spectru	m - CSCE Vancouver	Section 1	-2 June 2007		on K	enned	v

Longitudinal analysis	50
 Can always "define" longitudinal and transverse, but coupling of response can be essential in irregular bridges 	
 Same principles and methods apply as for transverse analysis 	
 Bridges are normally more flexible in longitudinal direction and displacements larger 	
 Behaviour of abutments and expansion joints complicates the analysis. 	
 Can bound analyses with "hinges free" and "hinges fixed". Both have significant limitations, can give poor results. 	
 Abutments may control movement for short bridges 	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kennedy	,

Displacement based design	52
 Present codes are 'force based' with some checking of displacements 	
 'Displacement based' design considers the target displacements and ductility demands on the members as design quantities. 	
 Stiffness in concrete piers is a function of strength, rather than a fraction of traditional moment of inertia 	
 Analysis and design process is therefore iterative. 	
 Must also adjust for effective damping to avoid over- conservatism 	
 Considered to be more logical and is straightforward 	
 "Myths and Fallacies", 2003, Nigel Priestley 	
 Extensive literature (WCEE Auckland (2000), Rose School, etc). 	
 When will it find its way into bridge codes? 	
 Acceptable for two major bridge projects in B.C. 	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007	dv

Outline	53
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
6. Analyses and Load combinations	
Design Forces (Friday and Saturday)	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Saturday, Case Studies)	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kenned	v

Ductile substructure elements	Response modification factor, R	
Wall-type piers in direction of larger dimension	2.0	
Reinforced concrete pile bents Vertical piles only	3.0	
With batter piles	2.0	
Single columns . Ductile reinforced concrete	3.0	
Ductile steel	3.0	
Steel or composite steel and concrete pile bents Vertical piles only	5.0	
With batter piles	3.0	
Multiple-column bents Ductile reinforced concrete	5.0	
Ductile steel columns or frames	5.0	
Braced frames Ductile steel braces	4.0	
Nominally ductile steel braces	2.5	

Probable vs. Nominal Flexural Resistances Probable flexural resistance = amplification factor x nominal (phi = 1.0) flexural resistance Amplification factor = 1.3 1.25 for concrete sections 1.25 for steel sections Resistance factor (flexural reinforcing dominated) = 0.9 Thus margin of demand for capacity-protected members = 1.35				
Probable flexural resistance = amplification factor x nominal (phi = 1.0) flexural resistance Amplification factor = 1.3 for concrete sections 1.25 for steel sections Resistance factor (flexural reinforcing dominated) = 0.9 Thus margin of demand for capacity-protected members = 1.35	Probable v	s. Nom	inal Flexural Resistances	i
Amplification factor =1.3for concrete sections1.25for steel sectionsResistance factor (flexural reinforcing dominated) = 0.9Thus margin of demand for capacity-protected members = 1.35	Probable flexural resist amplification factor x no	ance = ominal (phi =	1.0) flexural resistance	
Resistance factor (flexural reinforcing dominated) = 0.9 Thus margin of demand for capacity-protected members = 1.35	Amplification factor =	1.3 1.25	for concrete sections for steel sections	
Thus margin of demand for capacity-protected members = 1.35	Resistance factor (flexu	ural reinforcin	g dominated) = 0.9	
	Thus margin of demand	d for capacity	<i>r</i> -protected members = 1.35	
	sponse Spectrum - CSCE Va	ncouver Section		-

Outline	60
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
6. Analyses and Load combinations	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Saturday, Case Studies)	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007	vhv

Displacements	61
1. Ductile sub-structures	
2. Expansion joints	
3. Supports	
4. Bearings	
_	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007	on Kennedv

Outline	62
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
6. Analyses and Load combinations	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Saturday, Case Studies)	
The Response Spectrum - CSCE vancouver Section 1-2 June 2007	

Outline	63
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
Analyses and Load combinations	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
 Application to design (Saturday, Case Studies) 	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kennedy	

Outline	68
1. General application	
2. Seismic hazard	
3. Spectra	
4. Bridge types	
5. Modeling (global, local)	
6. Analyses and Load combinations	
7. Design Forces	
8. Displacements	
9. Some limitations of RSA	
10. Displacement based analysis and design	
11. Application to design (Friday & Saturday)	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Don Kenned	v