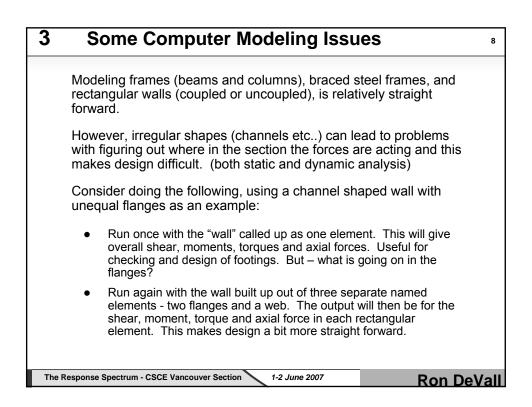
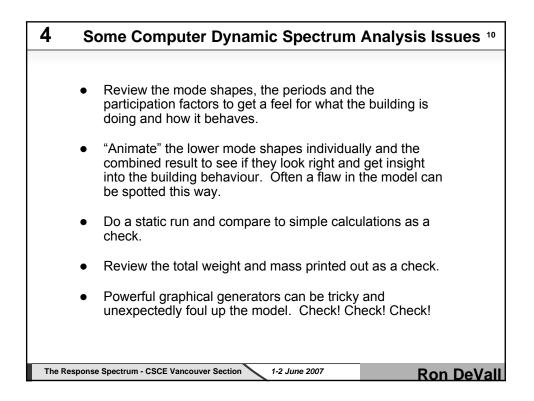

The Canadian Society fo	or Civil Engineering, Vancouver Section
<u>THE</u> <u>RESPONSE</u> <u>SPECTRUM</u>	Response Spectrum Analysis for Structures and the NBCC 2005
	Ron DeVall, PhD., P.Eng.
	Read Jones Christoffersen Ltd. (RJC)
A Technical Seminar on the Development and Application of the Response Spectrum Method for Seismic Design of Structures	Incorporating Discussions and Ideas From: Prof. Jag Humar, Ph.D – Carleton Prof. Don Anderson, Ph.D. – UBC Reza Anjam MA.Sc, P.Eng, RJC
Engineering 🖤 🌾	1-2 June 2007 Vancouver, BC


Outline		3
	1. Static Method (very brief)	
	2. Why Do a Dynamic Analysis?	
	3. Computer Modeling Issues (very brief – headings only)	
	4. Basic Response Spectrum Dynamic Analysis Issues	
	5. Basic NBCC 2005 Dynamic Analysis Issues	
The Response Spectrum	- CSCE Vancouver Section 1-2 June 2007	Ron DeVall

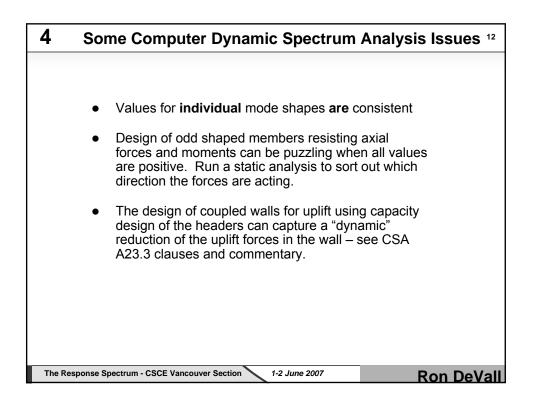
1	Static Method	4
	 The static method is based on dynamic analysis of "regular" structures. 	
	 It defines forces to apply to the structure which reproduce (more or less) the "correct" shear envelope up the building. 	
	 The Ft force at the top is period dependant and is intended to model higher mode effects. 	
	 The forces and their distribution, while roughly giving the correct dynamic shear, will overestimate the dynamic moments in the building. 	
	 The "J" Factor is used to "correct" the moment and bring it closer to the dynamic moment. 	
The R	esponse Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron De	Val



3	Some Computer Modeling Issues	7
	For this reason it is important to get the model to be as good an approximation as you can. Some of the items to think about in the model are:	
	shear displacements	
	finite joint sizes	
	 cracked "I" values in concrete, including the area of coupled walls. 	
	• behaviour of tall walls through deep, below grade structures.	
	 diaphragm displacements at discontinuities of the lateral system. 	
	effect of footing rotations.	
	 modeling the diaphragm – rigid? membrane? plate? 	
	 how to apply mass and in what units. 	
	 how to model complex walls – as a "whole" element or as separate pieces. 	
The Res	sponse Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron De	Vall

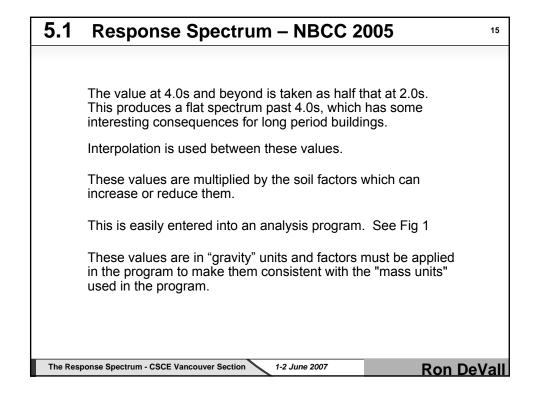
4 Some Computer Dynamic Spectrum Analysis Issues Understand the program! The "dynamic" result is a combination of mode shapes, so make sure there are enough to capture the building's behaviour. Pick 3 times the number of floors up to 15 or so. Mode shapes are combined to get the "design" values. Pick "CQC" instead of "SRSS" if possible as it is better when eigenvalues (periods) are close together. Check the mode shapes, and the mass participation factors to make sure at least 90% of the mass has been captured into the analysis. If not, increase the number of mode shapes used until 90% or more has been captured. Make sure that enough mode shapes (higher modes) are included to pick up the response of podiums at the base. The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron DeVall

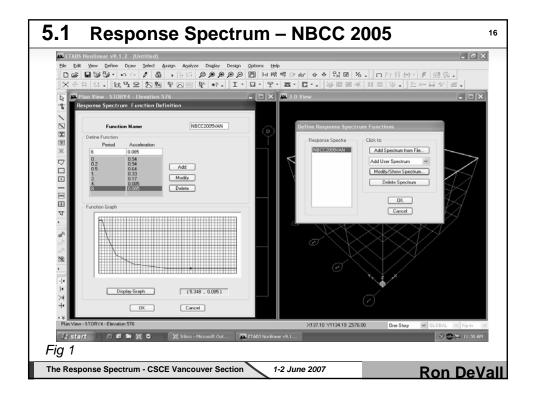
Ron DeVall

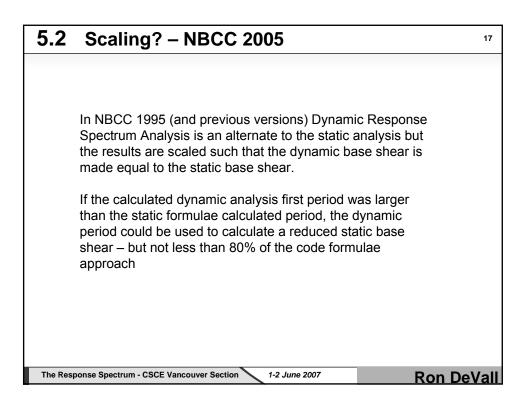

4 Some Computer Dynamic Spectrum Analysis Issues ¹¹

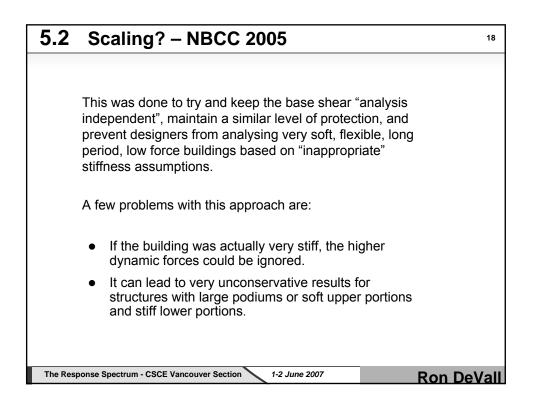
 The final results for moment, shear, displacement and drift are the result of an "SRSS" type combination of mode shapes that vibrate at different periods and so are not concurrent.

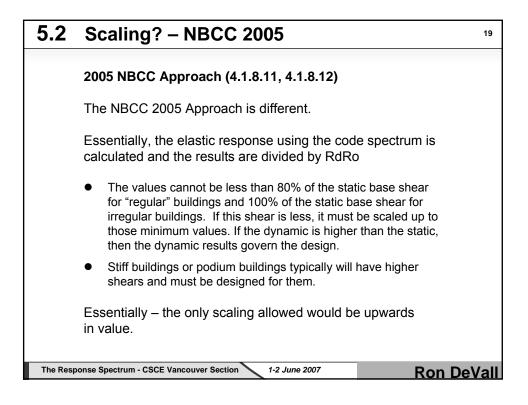
The result of this "SRSS" type combination is that:

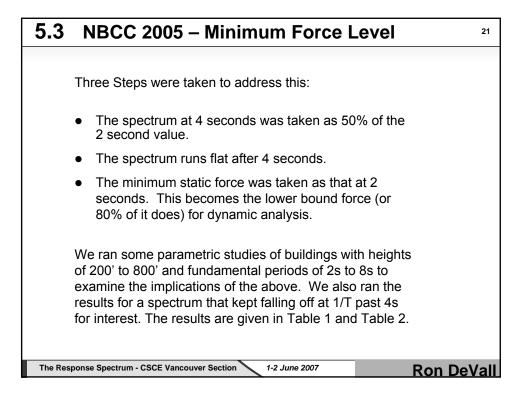

- All the values are positive.
- The design forces for M, V and P for a member are not in equilibrium and probably not concurrent.
- The lateral floor loads calculated are not in equilibrium with the base shear and moment.
- Drifts are an "SRSS" type summation of modal drifts and as such do not relate directly to the "SRSS" type displacements.
- Avoid back calculating any type of quantity from different quantities. It may be OK but can be dramatically different.

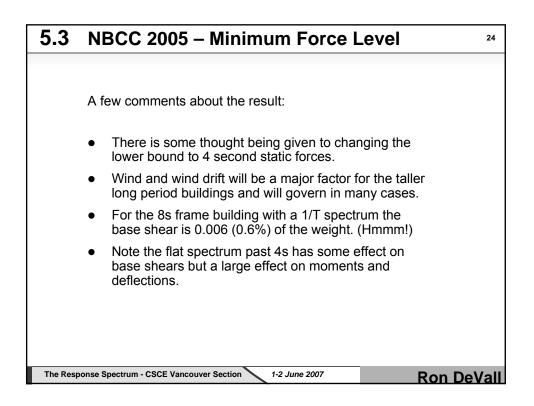

The Response Spectrum - CSCE Vancouver Section 1-2 June 2007




5	NBCC 2005 F	Response Spectrum Dynamic Analysis	13
	5.1	Spectrum	
	5.2	Scaling?	
	5.3	Minimum Force Level (and deflections!)	
	5.4	Minimum Force Level – Eccentric Building Issues	
	5.5	Accidental Eccentricity	
	5.6	P-Delta Effects	
The R	esponse Spectrum - CSCE Va	Incouver Section 1-2 June 2007 Ron De	Vall


5.1	Response Spectru	m	– NBCC 2005	14
	Site Properties Clause 4.1.8	.4		
	The Response Spectrum is githe way snow and wind loads		on a city by city basis similar to presented.	
	The values are in Volume 2 – periods of 0.2s, 0.5s, 1.0s and		P. C. and are given for natural 0s.	
	For Vancouver the values are			
	0.0s to 0.25	-	0.94g	
	0.5s	-	0.64g	
	1.0s	-	0.33g	
	2.0s	-	0.17g	
The Pe	sponse Spectrum - CSCE Vancouver Section		1-2 June 2007 Don 1	
THE RE			1-2 June 2007 Ron D	<u>Jevai</u>



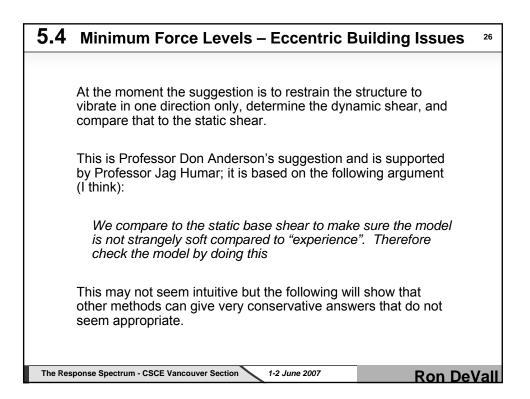


5.3	NBCC 2005 – Minimum Force Level ²⁰
	Minimum force level (and deflections) (4.1.8.11, 4.1.8.12)
	Previous versions of NBCC raised the static base shear at long periods to account for higher modes and to provide a small degree of conservatism for long period (i.e. tall) buildings. This was done by allowing the design forces to fall of at $1/\sqrt{T}$.
	However, NBCC 2005 uses a spectrum that falls off at 1/T in the long period range. The seismologists stated they do not have a lot of date for long periods and their confidence in the numbers decreases as the periods increase.
The Res	ponse Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron DeVal

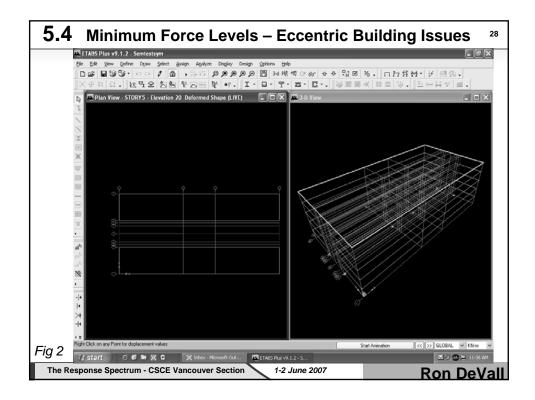
Vancouver Shear Walls	W, kips	36,000	72,000	144,000
RdRo=5.6	H, ft	200	400	800
	Period, s	2	4	8
Dynamic (2005 code)	V	1,300	1,820	2,510
Spectrum flat 4 sec	М	115,000	230,000	830,000
	Disp	0.84	1.70	6.83
	Drift %	0.63	0.64	1.28
Static (2s) (2005 code)	V	1,350	2,700	5,400
.e., evaluated at 2 second	М	137,500	533,900	2,277,000
values	Disp	1.48	6.87	28.16
	Drift %	1.11	2.58	5.28
Dynamic (2s) (2005 code)	V	1,300	2,160	4,320
Dynamic scaled to .8xStatic(2s)	M	115,000	272,967	1,428,526
	Disp	0.84	2.02	11.76
	Drift %	0.63	0.76	2.20
Dynamic2 (2005 code)	V	1,300	1,820	2,280
Spectrum 1/T beyond 4 sec	М	115,000	230,000	475,000
	Disp	0.84	1.68	3.57
	Drift %	0.63	0.63	0.67

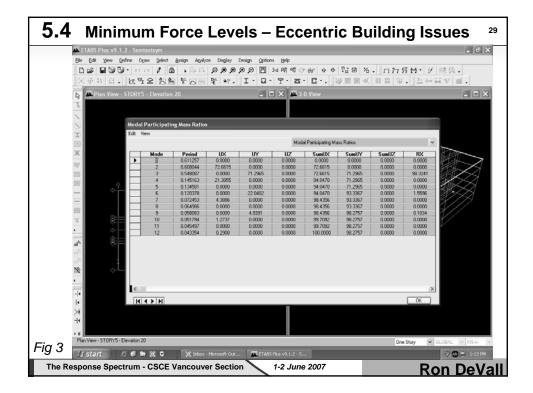
/ancouver Moment Frames	W, kips	36,000	72,000	144,000
RdRo=6.8	H, ft	200	400	800
coupled walls)	Period, s	2	4	8
Dynamic (2005 code)	V	870	870	1,520
Spectrum flat 4 sec	М	95,700	188,000	750,000
	Disp	0.79	1.55	5.85
	Drift %	0.5925	0.58	1.10
Static (2s) (2005 code)	V	900	1,800	3,600
e evaluated at 2 second	Μ	131,000	544,000	2,191,000
/alues	Disp	1.1	4.53	17.2
	Drift %	0.83	1.70	3.23
Dynamic (2s) (2005 code)	V	870	1,440	2,880
Dynamic scaled to .8xStatic(2s)	Μ	95,700	311,172	1,421,053
	Disp	0.79	2.57	11.08
	Drift %	0.5925	0.96	2.08
Dynamic2 (2005 code)	V	870	885	857
Spectrum 1/T beyond 4 sec	М	97,000	188,000	378,000
	Disp	0.79	1.55	2.9
	Drift %	0.5925	0.58	0.54

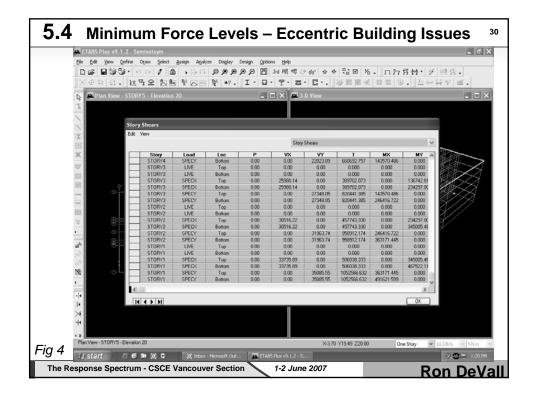
Ron DeVall

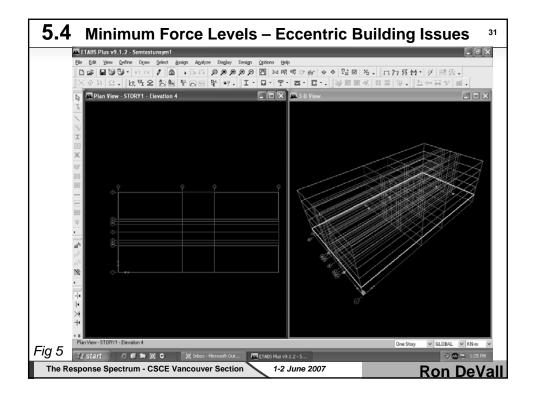

5.4 Minimum Force Levels – Eccentric Building Issues ²⁵

Certain types of eccentric buildings (as well as applying the spectrum along a non-principal axis) will generate out of plane dynamic forces which do not appear in a static analysis. This raises the question as to what to compare to the static base shear:

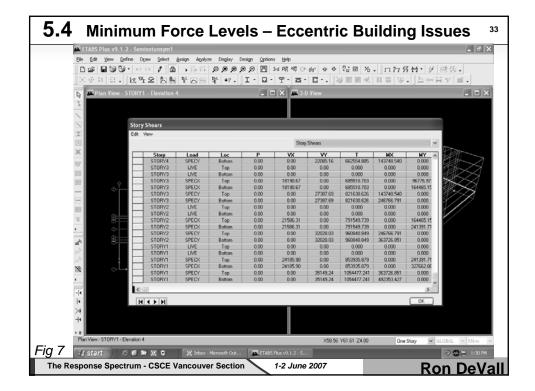

- The component in the direction?
- The resultant?
- What???

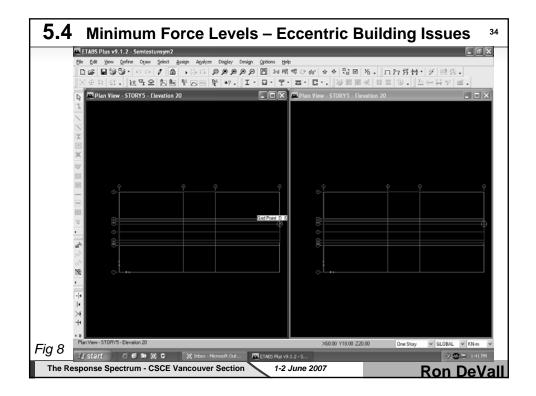

There has been some discussion about this in CANCEE. The first thought was that using the component is too conservative, and to use the resultant instead. However this has some problems as well.

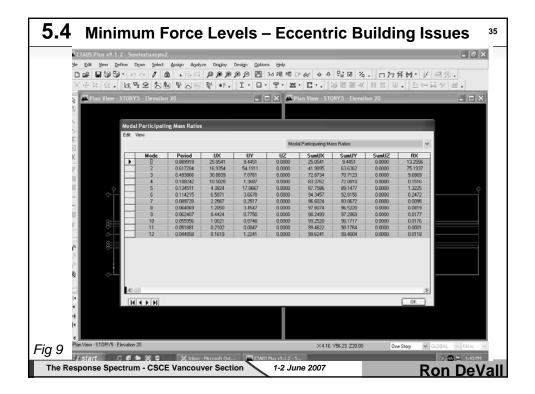

The Response Spectrum - CSCE Vancouver Section 1-2 June 2007

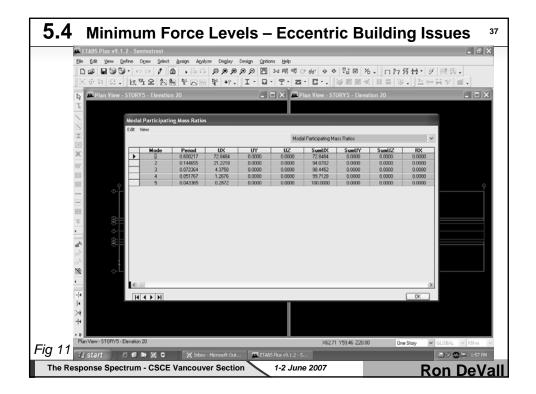


5.4 Minimum Force Levels – Eccentric Building Issues 27 We will look at a 5 storey building that is 60m by 30m and is analyzed in 3 configurations. Doubly symmetric and concentric i. ii. Symmetric about the Y axis but very eccentric about the X axis. Very eccentric about the X axis and slightly eccentric about the Y axis. iii. Note that since the height and weight are the same for all buildings, the static base shear is the same for all of them in both the X and Y directions. Also note that for the static results, loads in the X direction only produce a base shear in the X direction, and Y loads only produce a Y direction base shear for all 3 cases. The data presented is raw dynamic data for the elastic response (RdRo=1.0) as it is the comparisons that are of interest The building with eccentricities in two directions is then analyzed Restrained in the Y direction and the Z rotation direction and it is seen that (not surprisingly) it gives the same result as the symmetric building for the X direction. See the following figures and selected results. The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron DeVall








EX Word Define Dow Select Assign Applying Define Dow Define		2 - Semtestun										-
Image: Start Part Part Part Part Part Part Part	Ele Edit Yew Del			gn A <u>n</u> alyz								
Model Participating Mass Ratios Ed: Year Image: State St	06 899											
Modal Participating Mass Ratios Edit Yew Modal Participating Mass Ratios Edit Yew Modal Participating Mass Ratios 2 SwallY SwallY SwallY SwallY SwallY Figure State 2 045/351 0.0000 0.0000 42.8314 70.0228 0.0000 90.000 3 0.40258 2.9329 0.0000 42.8314 71.2228 0.0000 90.000 3 0.40258 2.9329 0.0000 42.8314 71.2228 0.0000 0.0000 4 0.171.276 0.0000 71.2229 0.0000 0.0000 159.98 4 0.171.276 6.90000 0.0000 97.2727 91.3328 0.0000 0.0000 5 0.171.267 6.9926 0.0000 97.272 91.3328 0.0000 0.0000 7 0.0682.97 1.270 0.0000 0.0000 92.975 0.0000 0.0000 10 0.0692.07 0.248 0.0000 92.9	X@A G.	692	白色 9	- 🖂 🖂	Pet a? .	I - Q -	7. 3.	C	》回回《	田昌陽	· In 10-1	首步 回。
Modal Participating Mass Ratios Edit Yew Modal Participating Mass Ratios Edit Yew Modal Participating Mass Ratios 2 SwallY SwallY SwallY SwallY SwallY Figure State 2 045/351 0.0000 0.0000 42.8314 70.0228 0.0000 90.000 3 0.40258 2.9329 0.0000 42.8314 71.2228 0.0000 90.000 3 0.40258 2.9329 0.0000 42.8314 71.2228 0.0000 0.0000 4 0.171.276 0.0000 71.2229 0.0000 0.0000 159.98 4 0.171.276 6.90000 0.0000 97.2727 91.3328 0.0000 0.0000 5 0.171.267 6.9926 0.0000 97.272 91.3328 0.0000 0.0000 7 0.0682.97 1.270 0.0000 0.0000 92.975 0.0000 0.0000 10 0.0692.07 0.248 0.0000 92.9	Plan View - S		untion A) Vinu				4 🖽
Model Participating Mass: Filder: Model Participating Mass: Filder: Image: Filder: Image: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Filder: Filder: Filder: Image: Filder: Fi	Plan View - 3		ration 4					y view				
Model Participating Mass: Filder: Model Participating Mass: Filder: Image: Filder: Image: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Filder: Filder: Image: Filder: Filder: Filder: Filder: Filder: Filder: Filder: Image: Filder: Fi												
Ext Verw Image: State Stat												
Ext Verw Image: State Stat		Hedal Dartie	cientine M	see Dation								
Model Patricipating Mass Ratio: Model Model Patricipating Mass Ratio: <u> 0.757591 4.3514 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 7.2529 0.0000 10.000 </u>			cipating is	ass natios	_	_	_	_	_	_	_	10 M I
Mode Period UX UY UZ SumUX SumUY SumUX RX 2 0.4557861 42.9314 0.0000 42.9314 71.0228 0.0000 90.000 3 0.462561 22.929 0.0000 72.270 71.3228 0.0000 95.9324 4 0.173776 14.3857 0.0000 97.270 71.3228 0.0000 90.000 5 0.120286 0.0000 20.0000 97.277 93.3388 0.0000 15.999 6 0.173267 6.926.5 0.0000 97.1917 93.3388 0.0000 0.0000 7 0.058123 1.0766 0.0000 90.0000 92.3388 0.0000 0.0000 9 0.066123 1.0766 0.0000 93.3388 93.2775 0.0000 0.0000 10 0.055237 0.2249 0.0000 93.9358 0.0000 0.0000 11 0.056207 0.2249 0.0000 93.93584 93.2775 0.00	<u>i</u>	LUK VIEW					Made	Duticie stice M	an Dalian			7000
0 0.7578/51 42/314 0.0000 42/314 0.0000 0.0000 0.0000 9.00000 9.0000 9.0000		_										kan-
2 0.646/x00 0.0000 71.2259 0.0000 68.227 3 0.460/x17 14.3857 0.0000 0.0000 72.2219 0.0000 0.0000 4 0.173170 14.3857 0.0000 87.227 71.3229 0.0000 0.0000 5 0.12026 0.0000 2.2159 0.0000 87.227 91.338 0.0000 1.5568 5 0.12026 0.0000 0.22159 0.0000 92.275 93.338 0.0000 0.0000 7 0.066203 1.0766 0.0000 92.303 93.328 0.0000 0.0000 9 0.0666203 1.0766 0.0000 0.0000 98.303 93.328 0.0000 0.0000 9 0.066623 1.0766 0.0000 0.0000 98.303 93.275 0.0000 0.0000 10 0.05527 1.1142 0.0000 0.0000 98.994 98.275 0.0000 0.0000 11 0.05627 1.1142 0.0000 95.994 98.5954 0.0000 0.0000 112 0		Mo										
3 0 40251 23239 0.0000 72.013 71.323 0.0000 0.0000 4 0.17376 0.0000 20000 67.2270 93.338 0.0000 1599 5 0.17028 0.0000 0.0000 97.2270 93.338 0.0000 1599 7 0.05929 2.55.0 0.0000 0.0000 97.277 93.338 0.0000 0.0000 7 0.05929 1.0766 0.0000 0.0000 97.277 0.0000 <td></td>												
4 0.173170 14.3557 0.0000 0.0227 71.323 0.0000 1.0000 5 0.112267 0.0000 2.22159 0.0000 87.227 31.338 0.0000 1.0000 6 0.112267 0.5556 0.0000 0.0000 87.917 31.338 0.0000 1.0000 7 0.05522 2.5530 0.0000 0.0000 97.917 31.3398 0.0000 0.0000 9 0.056523 1.0766 0.0000 0.0000 99.2903 99.2775 0.0000 0.0000 10 0.05527 1.1142 0.0000 0.0000 99.5914 99.2775 0.0000 0.0000 11 0.056237 0.1147 0.0000 99.5954 99.5954 0.0000 0.0000 12 0.46528 0.0000 1.4179 0.0000 99.5954 0.0000 0.0000 12 0.46528 0.0000 1.4179 0.0000 99.5954 0.0000 0.0000 14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1245-2</td></td<>												1245-2
5 0.1126/26 0.0000 22/0159 0.0000 92/270 95.338 0.0000 1.90/5 7 0.0656/23 2.26/20 0.0000 0.0000 92.070 95.338 0.0000 0.0000 8 0.0660/23 1.0765 0.0000 0.0000 92.075 0.0000 0.0000 9 0.05663/2 1.0765 0.0000 0.0000 93.338 0.0000 0.0000 9 0.05663/2 1.0765 0.0000 0.0000 93.338 0.0000 0.0000 10 0.0562/27 1.1472 0.0000 0.0000 93.5954 96.2775 0.0000 0.0000 11 0.0562/07 0.2249 0.0000 0.0000 93.5954 96.275 0.0000 0.0000 12 0.040628 0.0000 1.4179 0.0000 93.5954 96.5954 0.0000 0.0000 12 0.040628 0.0000 1.4179 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000<	_ Ŷ	4										
7 0.055029 2.95:0 0.0000 90.0000 90.0000 0.0000<	-i-°	5										1920-1
8 0.00000 1.0786 0.0000 982,003 93398 0.0000 0.0000 9 0.009063 0.0000 45375 0.0000 982,003 982,775 0.0000 0.0000 10 0.055227 1.1142 0.0000 982,043 982,775 0.0000 0.0000 11 0.055227 1.1142 0.0000 0.0000 985,994 982,775 0.0000 0.0000 12 0.046528 0.0000 1.4179 0.0000 955,994 982,775 0.0000 0.0111 12 0.046528 0.0000 1.4179 0.0000 955,994 982,675 0.0000 0.0111 12 0.046528 0.0000 1.4179 0.0000 955,994 982,675 0.0000 0.0111		6	0	112367	6.9926	0.0000	0.0000	94.2196	93.3398	0.0000	0.0000	\mathbb{S}/\mathbb{Z}
9 0.09963 0.0000 4 5375 0.0000 982,903 982,275 0.0000 0.1005 10 0.055,27 1.114.2 0.0000 0.0000 982,943 982,275 0.0000 0.0000 11 0.055,027 0.2249 0.0000 0.0000 982,9594 982,275 0.0000 0.0000 12 0.0495,28 0.0000 1.4179 0.0000 983,5934 98.6954 0.0000 0.0111 I I 0.0495,28 0.0000 1.4179 0.0000 983,5934 98.6954 0.0000 0.0111 IVerv - STOPY1 - Elevation 4 X48.87 Y47.01 Z4.00 Dree Story OLOBAL V		7										V//
10 0.05227 1.1142 0.0000 0.0011 12 0.046628 0.0000 14173 0.0000 955594 98.5954 0.0000 0.0111 Image: Image	0											1/
11 0.00000 0.2249 0.0000 99.5994 99.275 0.0000 0.0000 12 0.040528 0.0000 1.4179 0.0000 99.5994 99.5954 0.0000 0.0111 12 0.040528 0.0000 1.4179 0.0000 99.5994 99.5954 0.0000 0.0111 Image: State	8E											\mathcal{V}
12 0.040628 0.0000 1.4179 0.0000 59.5934 99.6554 0.0000 0.0111 Image: Strate Str												r i
Vew - S100Y1 - Elevation 4 X48,87 Y47,01 Z4.00 One Story © 0LOBAL >	a l											
IM IM OK In New - 510 Pr1 - Elevation 4 X48.87 Y47.01 Z4.00 One Stopy ✓ GLOBAL ✓	1 8E		2 0	040528	0.0000	1.4179	0.0000	33.5334	33.6354	0.0000	0.0111	
Image: Market Procession OK In Wew - 510Ph1 - Elevation 4 X48.87 Y47.01 Z4.00 Dire Stopy ✓ GLOBAL [M]	34											
Image: Market Procession OK In Wew - 510Ph1 - Elevation 4 X48.87 Y47.01 Z4.00 Dire Stopy ✓ GLOBAL [M]	1											
Image: Market Procession OK In Wew - 510Ph1 - Elevation 4 X48.87 Y47.01 Z4.00 Dire Stopy ✓ GLOBAL [M]	e .l											
Image: Market Procession OK In Wew - 510Ph1 - Elevation 4 X48.87 Y47.01 Z4.00 Dire Stopy ✓ GLOBAL [M]		1										
Image: Market Procession OK In Wew - 510Ph1 - Elevation 4 X48.87 Y47.01 Z4.00 Dire Stopy ✓ GLOBAL [M]												
Image: Market Area OK Image: Market Area X48.87 'Y47.01 Z4.00 Dires Stopy ✓ GLOBAL []												
n View - S10(1Y1 - Elevation 4 X48.07 Y47.01 Z4.00 One Stop 🕑 GLOBAL 🔛		<									>	1
in View - 570 PY1 - Elevation 4 X48.87 Y47.01 Z4.00 One Story 😢 GLOBAL 🔛		HAD	н								OK	
			71									
	•											
	6 1											
Start A B B X D X Inbox - Microsoft Out I TETAPS Plus v9.1.2 - 5	an View - STORY1 - El	evation 4						×48.87	Y47.01 Z4.00	One	Story 🛩	GLOBAL 🕑 K
			0 21	W Inhorn	Manach Ort	THE STARS	Mix v9 1 2 . C					000

File	∖BSPlusv9.1.2 - Sem Edit ⊻iew Define De	aw Select Assig	n Apalyze	Disglay Desig	n Options He	-In	_	_	_	_	
D c	el DISG Bayloo		B.G.				6 A 3	⊠ %.		4 - 26 0	<i>a</i> .
			1.10								
100	9 R S .] K 7	2 2 2 2 2 2		. •? •] T	- U - T	· = · L]@B	3 16 9, 11	= ψ •]	프트티오	三 •
R A	Plan View - STORY5	i - Elevation 20			- O X	🔤 Plan Vi	iew - STORY5	- Elevation 2			9 1 2
-											
<u></u>											
\mathbf{N}											
N		tory Shears									
1221						_					4
122	E	dit View				-					
~						Story	Shears			¥	
_		Story	Load	Loc	Р	VX	٧Y	T	MX	MY A	
17		STORY4	SPECY	Bottom	0.00	9474.65	16647.20	604216.521	109376.256	61260.55	
11 H		STORY3	LIVE	Top	0.00	0.00	0.00	0.000	0.000	0.000	
		STORY3	LIVE	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
2 H	<u>م</u>	STORY3	SPECK	Top	0.00	16177.31	11950.48	688067.394	62570.330	85434.50	
- 1		STORY3	SPECK	Bottom	0.00	16177.31	11950.48	688067.394	107786.728	145931.03	
		STORY3 STORY3	SPECY SPECY	Top Bottom	0.00	11763.10 11763.10	20510.45 20510.45	737336.419 737336.419	109376.256 185036.327	61260.55 105945.46	
8 H.		STORY2	LIVE	Top	0.00	0.00	0.00	0.000	0.000	0.000	
2 H	a	STORY2	LIVE	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
5	8-	STORY2	SPECX	Top	0.00	19191.37	13952.96	806261.229	107786.728	145931.05	
	0	STORY2	SPECK	Bottom	0.00	19191.37	13952.96	806261.229	159079.056	214727.55	
_	0	STORY2	SPECY	Top	0.00	13757.54	24253.67	880408.591	185036.327	105945.46	
12	8-	STORY2	SPECY	Bottom	0.00	13757.54	24253.67	880408.591	271445.668	156438.75	
3.8		STORY1	LIVE	Top	0.00	0.00	0.00	0.000	0.000	0.000	
5		STORY1	LIVE	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
	- 1	STORY1	SPECK	Top	0.00	21503.09	15175.35	879354.565	159079.056	214727.55	
×	0 -	STORY1 STORY1	SPECX SPECY	Bottom	0.00	21509.09 15175.35	15175.35 26935.14	879354.565 985576.547	215193.492 271445.668	291692.64 156438.75	
		STORY1	SPECY	Bottom	0.00	15175.35	26935.14	985576.547	368033.339	211991.66	
-			SPECT	Donom	0.00	10110.00	20000.14	303370.347	200033.333		
-14		<				_				>	
14		HAPH								OK	
>4		1 / /									
-14											
18											
Plan V	few - STORY5 - Elevation 2	0					X10.44 Y61.5	2 720.00	One Story		AL 🗸 KN

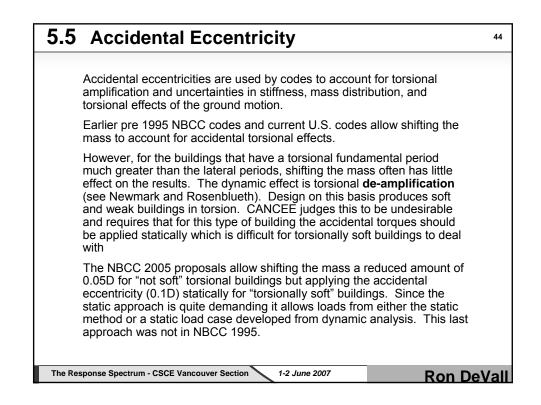
Ele	Edit View Define	Dgaw Select	Assign Ana	lyze Dis <u>p</u> lay	Design <u>O</u> pti	ons <u>H</u> elp					
	r ∎99•	000 1 6	A → A ≤ C		00	3-d PR 40 ()	65 4 .	♦ 12 10 16	· []]]	另村。	经营备.
Ix.	@ B G . 10	542 24	94 00 00	BL 02 -	I-D	· · · ·	E			# . In 1	- F 2 E.
- 10	1 1 1 1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
13	🖬 Plan View - STC	ORY5 - Elevation	20		-		an View - S	TORY5 - Elevati	ion 20		
The											
<u> </u>	_		_		_		_		_	_	_
	Sto	ory Shears									
2	Edi	t View									
1						Story S	ihears				~
(X)		Elem	Load	Loc	Р	VX I	VY	T	MX	LIV	
ж		Story STORY4	SPECY	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	<u> </u>
		STORY3	LIVE	Top	0.00	0.00	0.00	0.000	0.000	0.000	
		STORY3	LIVE	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
		STORY3	SPECK	Top	0.00	26222.92	10.39	783036.721	235.390	137716.16	
191		STORY3	SPECX	Bottom	0.00	26222.92	10.39	783036.721	276.908	236343.50	
	o je	STORY3	SPECY	Top	0.00	0.00	0.00	0.000	0.000	0.000	
_	× III	STORY3	SPECY	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
		STORY2	LIVE	Top	0.00	0.00	0.00	0.000	0.000	0.000	
100		STORY2	LIVE	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
	0	STORY2	SPECK	Top	0.00	30769.39	7.04	920632.282	316.451	236343.50	
. U.	8==	STORY2	SPECK	Bottom	0.00	30769.39	7.04	920632.282	344.541	348253.49	
	0	STORY2	SPECY	Top	0.00	0.00	0.00	0.000	0.000	0.000	
	<u></u>	STORY2	SPECY	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
110	8-E	STORY1	LIVE	Top	0.00	0.00	0.00	0.000	0.000	0.000	
		STORY1	LIVE	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
25		STORY1	SPECX	Top	0.00	33975.56	2.53	1015075.695	369.164	348253.45	
ch's		STORY1	SPECX	Bottom	0.00	33975.56	2.53	0.000	379.262	471905.80	
12	0-L	STORY1 STORY1	SPECY	Bottom	0.00	0.00	0.00	0.000	0.000	0.000	
		STURTI	SPEUT	Dottom	0.00	0.00	0.00	0.000	0.000		~
		٤								>	
-14	r i i i i i i i i i i i i i i i i i i i	HAPH								OK	
14											
28											
-14											
48	view - STOR'r/5 - Eleva										-
								71 Y59.46 Z20.00		Ine Story	🗸 GLOBAL 🖂 KN-

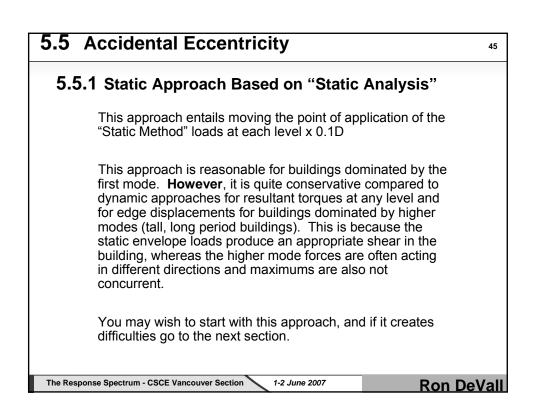
Periods	Mode Shape	Symmetric Building	Y Symmetry Only	Unsymmetric 2 Axes	Restrained
in	1	(TOR)0.611	0.758	0.89	0.60
Second	2	0.608	0.547	0.617	
	3	0.548	0.483	0.494	
	Dynamic X				
	X Axis (kn)	33,735	24,185	21,509	33,975
Base	Y Axis (kn)	0.0	0.0	15,175	
Shear	Dynamic Y				
	X Axis (kn)	0.0	0.0	15,175	
	Y Axis (kn)	35,085	35,149	26,935	

5.4	Minimum Force Levels – Eccentric B	uilding Issues ⁴⁰			
Re	Review of Table 3 raises several questions:				
•	What period to use for the static calculations? The period of the symmetric building is torsion. The buildings are clearly softened by the eccentricitie periods have large torsions in their mode shapes	unsymmetric is and the lowest			
•	The double unsymmetry produces out of plane for not be intuitive. However, for the first two buildin along X, even with rotation about Z, does not pro- deflection along Y. However, for the doubly unsy a deflection along X produces a Y displacement about Z. For the dynamic case, this generates d the Y direction. This is not true for the static case	gs, deflection duce a C.M. ymmetric building due to rotation ynamic forces in			
	What to compare to the X static force – the X con resultant?	nponent or the			
•	Looking at the "dynamic X" results it seems clear the X component of the resultant is conservative what is a "real" effect of base shear reduction for buildings. (This effect is discussed in " <i>Fundame</i> <i>Earthquake Engineering</i> " by Newmark and Rose	and penalizes eccentric <i>ntals of</i>			
The Resp	The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron DeVa				

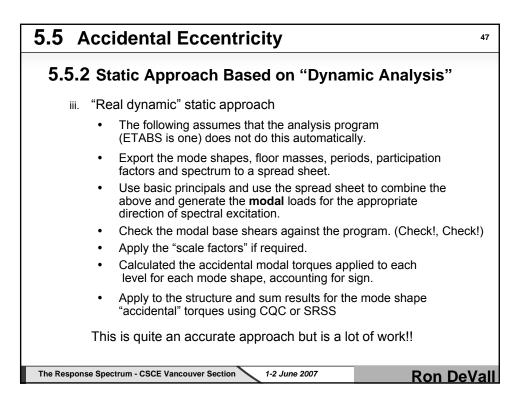
5.4 Minimum Force Levels – Eccentric Building Issues 41 Review of the static calculation also raises some questions. The values are approximately: • For the short period cut off of 0.667 times the 0.2 second spectral value. $V_b \cong 46,000$ km (+/-) (NBCC does not address this cut-off if a dynamic is used for a short period building – this is a problem.) • Static code value = $0.05(20)^{0.75}$ = 0.47 seconds X 2 = 0.94 seconds For T = 0.61 seconds V_b= 41,300 kn (+/-) T = 0.758 seconds For V_b= 34,920 kn For T = 0.89 seconds (not really a pure X direction period) V_b= 29,200 kn For comparison to the static, a lower bound of 80% of the static can be used for regular buildings and 100% for irregular buildings. Table 4 shows a few lower bound checks for the X direction. The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 **Ron DeVall**

Scale Factor For Lower Bounds Calculated For Various Assumptions - X direction.				
	Т	V Static	V Dynamic	Scale Factor
Symmetric Building	0.61	41,300 (0.8)	33,000	1.0
Scale to Restrained Case (Jag Humar, Don Anderson)	0.61	41,300 (1.0) (Unsymmetric buildings)	33,900	1.22
Singly Symmetric Use Actual Period (dubious)	0.758	34,900 (1.0)	24,200	1.44
Doubly Symmetric Use Actual Period (dubious)	0.89	29,300 (1.0)	21,500 (component)	1.36
	0.89	29,300 (1.0)	26,300 (resultant)	1.11

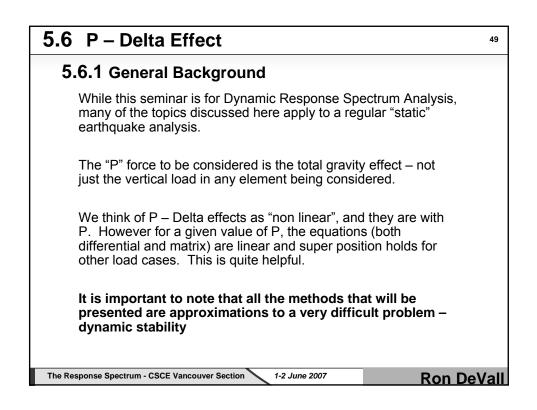

Ron DeVall

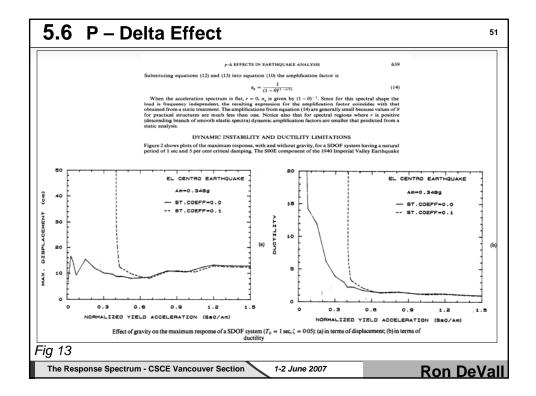

5.4 Minimum Force Levels – Eccentric Building Issues ⁴³

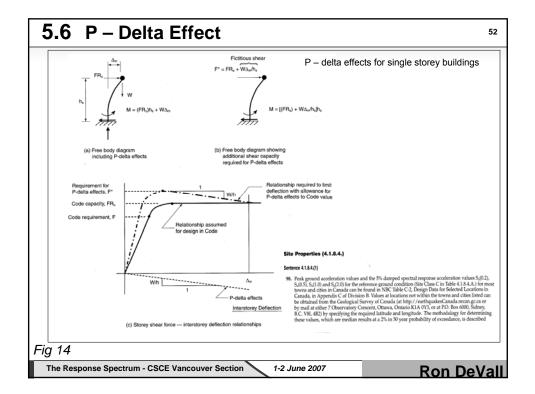
Recommend:

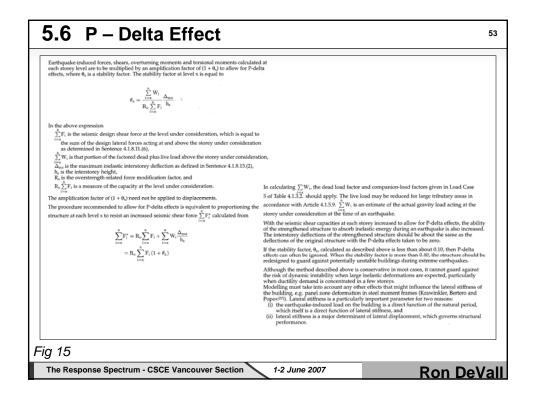

- Use Professors Humar and Anderson's suggestion
- Restrain the structure to determine the period for determination of the static shear.
- This captures "suitability" of the stiffness of the model, which is the main reason for any kind of "comparing to static" approach.
- Determine any lower bounds and appropriate "upward" scale factors from this approach.
- It removes the uncertainty of how much of the fundamental period is softened by including torsional components.
- It allows full capture of the "real" torsional behaviour of the model.
- For the example buildings, it gives lower scaling values except for the dubious example where the period contains lots of "torsion" and even here it is only about 10% high.

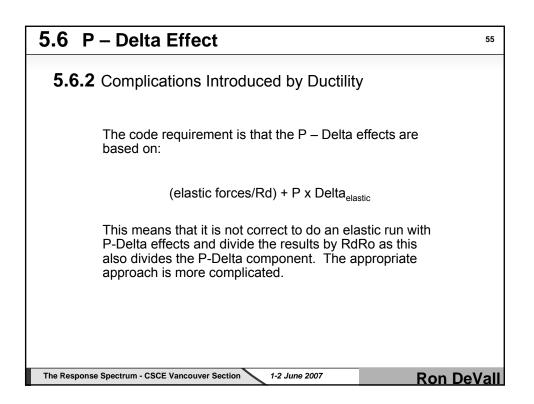
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007

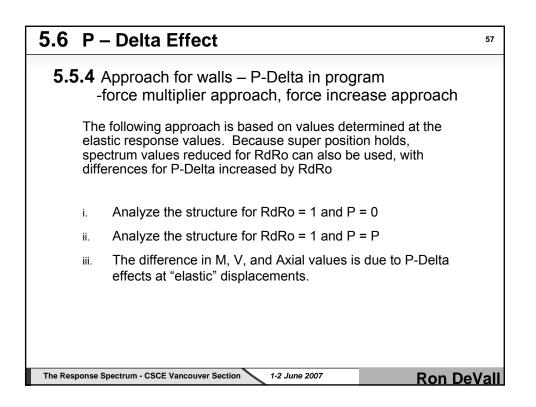


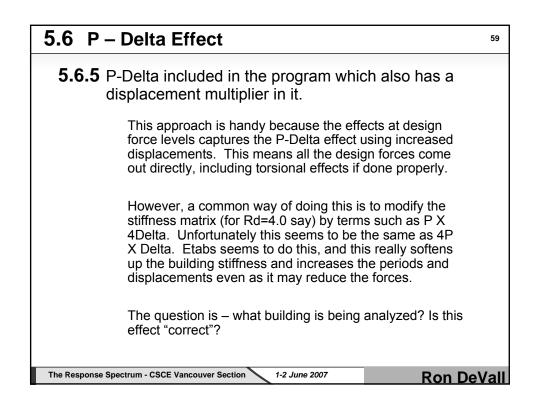

5.5	Accidental Eccentricity	46
5.5.	2 Static Approach Based on "Dynamic Analysis"	
i.	Use the "floor loads" given by the dynamic analysis (very poor) These are the "maximums" produced at each floor (SRSS of the modal floor loads) and are not concurrent nor always in the same direction. When added up the sum exceeds the base shear	
	This approach is even more conservative than the static approach from the static analysis in 5.5.1	
ii.	"Pseudo Dynamic" static approach.	
	Generate a force at each floor by taking the differences between the dynamic shear at each floor. Loads developed this way will regenerate the shear envelope.	
	Use this force distribution multiplied by 0.1D to calculate a floor torque load to apply to the structure.	
	This may be an improvement on the static approach in 5.5.1, but it may not be much of an improvement as the static force of the static method are based on generating a shear envelope that reflects dynamic analysis.	
The Respo	nse Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron De	Vall

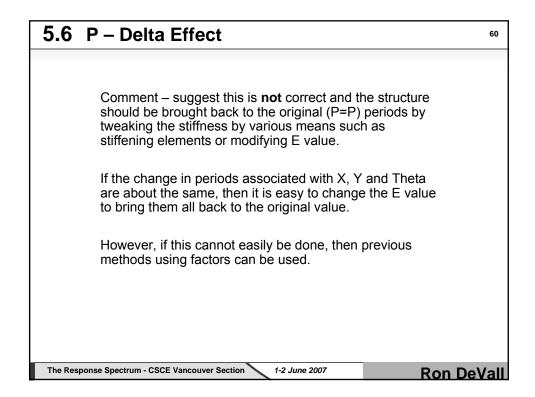


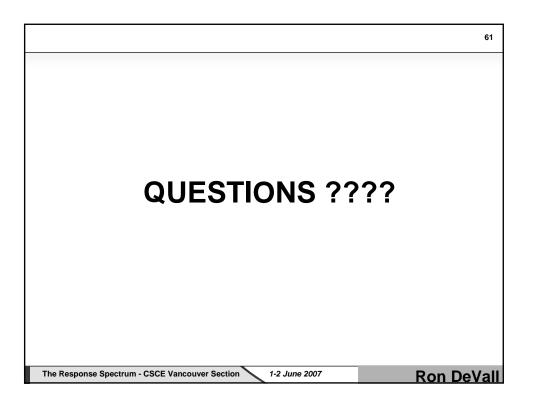

5.5 /	Accidental Eccentricity 4
5.5.2	2 Static Approach Based on "Dynamic Analysis"
iv.	Pseudo "real dynamic" approach
	Repeat the steps in (iii.) up to calculation of the modal accidental torques applied to each floor. Then use the spread sheet to continue on as follows:
	 Sum each of the modal accidental floor torques down the building to get the torsional resultant for each mode at each floor.
	 Do an SRSS of the modal resultant torsions at each floor to get one value of the accidental torsional resultant at each floor.
	 Use this envelope of torsion to back figure a single floor torque load at each floor by subtracting the different torsional resultant values at adjacent floors.
	 These "back figured" floor torques (one per floor) will generate the SRSS torsional resultant at any level when summed over the floors above.
	 Use these "backfigured" floor torques as a single load case in the analysis program. This is much easier to deal with.
The Respon	se Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron DeVa


5.6 P – Delta Effect	50
There is a fundamental difference in behaviour between wind loads and earth quake loads.	
 Wind loads – Increasing P increases displacements and forces, and the usual "P – Delta" analysis works fine. 	
 Earthquake Loads – increasing P does not increase the maximum displacements until a difficult to determine critical value is reached – and then the displacement blows up. This is illustrated by figures from Prof. Bermal at Northwestern University. See Fig 13. It may be these curves that give us the idea that the displacements do not need to be increased for P – Delta effects. 	
The Canadian code approach is based on work like this and others, such as Jim Montgomory, P.h.D, P.Eng, and work by Tom Paulay. See Fig 14 and 15.	
The Response Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron D	eVall




5.6	P – Delta Effect	54
	This approach calculates a factor to apply to the design force values. It is based on the "expected, elastic" displacements and when the factor exceeds 1.4 the structure should be stiffened.	
	Note that while stiffness could be added, the approaches tend to "fix what is there" by adding strength instead. (note that often this results in an increase in stiffness as well.) The displacement is the same for both the P case and the $P = 0.0$ case.	
	Note also that the derivation of the equations for this approach tends to be frame based. It also addresses X and Y but no torsional effects. The strength increase required is based on the resistance including the "overstrength" effects. This philosophy holds true for the following discussions as well, i.e., the increase is added to the "actual" strength, not the factored strengths.	
The Res	sponse Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron De	Vall




5.6 P-	Delta Effect	56
5.6.3 "	Rough" Approach For Walls - No P-Delta in Progran	n
	heck the periods, and make sure the torsional period is bout the same or less than the X and Y periods.	
● U	se the principals of the NBCC commentary approach by:	
i.	Take the elastic displacement of the centroid of the weight and calculate the P-Delta base moment about X and Y (M $_{\text{P-Delta}})$	
ii.	. Calculate the base moment M_{Rd} using Rd with Ro = 1.0	
iii	i. Calculate a factor "F" for X and Y	
	$F = (M_{Rd} + M_{P-Delta})/M_{Rd}$	
	If "F" is greater than 1.4, stiffen the structure.	
iv	 Apply to the program forces calculated using RdRo for the respective direction of load. 	
v	. Note this assumes any torsional effects will have multipliers less than or equal to the X and Y factors. The limit on the torsional period may make this so but it is an iffy assumption.	
The Response Sp	Dectrum - CSCE Vancouver Section 1-2 June 2007 Ron DeV	all

5.6	P – Delta Effect	58
iv.	These can:	
	 Be reduced by dividing by Ro and adding directly to the design values to be resisted by factored resistances. 	
	 Or (an approximate shortcut) calculate the difference in moment/axial at the base for each element and determine a multiplier for each element 	
l	Factor = $(M_{Rd} + M_{P-Delta})/M_{Rd}$	
	This should capture torsion effects – but it also assumes the maximum factor is at the base. This may not be too bad an assumption for walls, but it should be confirmed.	
l	Or (an approximate shorter cut)	
l	This is more-or-less the approach in the commentary	
	Perform the above calculation for the total base overturning moments and torque. Use the largest value of the calculated factor for all design values.	
	These "factors calculated at the base" may be a reasonable approximation for walls but may be poor for frames with a soft storey.	
The Resp	bonse Spectrum - CSCE Vancouver Section 1-2 June 2007 Ron De	Vall

