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ABSTRACT 
 
A building in which the center of stiffness (CR) is not coincident with center of mass (CM) along only one 
horizontal plan axis is defined as a one-way asymmetric building. Further, if such a building is constructed 
with supplemental damping, e.g. viscous dampers in the braces, it becomes a non-proportionally or non-
classically damped system. Its damping matrix can not be diagonalized from the mode shapes of the 
undamped system. Not counting the time-consuming direct integration of the equation of motion for the 
original multiple-degree-of-freedom (MDOF) system, the conventional seismic analysis of the noted 
structures can be categorized into two types. One is based on the use of complex mode shapes and the 
other one on neglecting the off-diagonal elements of the transformed damping matrix. The shortcomings 
of the two approaches are that they are either too complicated for practicing engineers or result in 
unacceptable errors.  An approximate method is proposed for the seismic analysis of this kind of structure. 
The proposed method is a modal analysis method that uses two-degree-of-freedom (2DOF) modal 
equations. Since the proposed 2DOF modal equations inherit the non-proportional damping property of 
the original MDOF system, the modal translation and rotation are not proportional even in an elastic state. 
Three numerical examples, which include two one-story and one three-story prototype buildings, are 
worked out in this research. The results are compared with those obtained by the direct integration of the 
equations of motion for the original MDOF system and the typical simplified modal analysis by neglecting 
the off-diagonal elements in the transformed damping matrix. These examples illustrate that the use of 
the proposed method can effectively improve the accuracy of the analytical results, without significantly 
increasing the computational efforts.  
 

Introduction 
 
Although the research on the dynamic responses of non-proportionally damped symmetric structural 
systems was conducted at a much earlier time (Moh et al. 1965; Itoh 1973), the study of non-
proportionally damped asymmetric structures was performed much later (Goel 1998). Based on the 
literature review conducted by Goel (2001), the methods for analysis of non-proportionally damped 
systems are categorized and their corresponding shortcomings are stated briefly as follows. The first 
approach is to integrate directly the coupled equations of motion, which is numerically inefficient for 
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systems with a large number of degrees of freedom. Thus, Clough and Mojtahedi (1976) proposed to 
directly integrate a truncated set of coupled modal equations, which is more efficient than dealing with the 
complete set of coupled equations of motion in discrete coordinates. The other approach is the mode 
superposition method using complex mode shapes (Igusa et al. 1984; Veletsos and Ventura 1986; Goel 
2000), which results in doubling of the size of the eigenvalue problems and difficulties associated with the 
use of complex numbers in the dynamic response analysis. Another approach is the hybrid time-domain, 
frequency-domain procedure (Ibrahimbegovic et al. 1990; Claret and Venancio-Filho 1991), which solves 
the coupled modal equations iteratively in time domain. However, this method cannot be implemented on 
most commercially available structural analysis programs. Finally, the last approach, which is the most 
common and simplest approach, is to simply neglect the off-diagonal elements in the transformed 
damping matrix. It is appealing to the design professionals because it enables the use of the traditional 
modal analysis methods. 
 
Warburton and Soni (1977) have studied the accuracy of the last approach, and have proposed a 
condition involving the natural frequencies and the elements of the transformed damping matrix which, if 
fulfilled, limits response calculation errors to a specific range. Goel (2001) investigated the effects of 
neglecting off-diagonal terms of the transformed damping matrix on the seismic response of non-
proportionally damped one-way asymmetric systems. The specific aim of that study was to identify the 
range of system parameters for which this simplification could be used without introducing significant 
errors in the response. Goel (2001) concluded that the aforementioned approximate method was suitable 
for use over a wide range of parameters. The error parameter, defined by Warburton and Soni (1977), 
becomes excessive when the value of the normalized supplemental damping eccentricity sde  is close to -
0.5. This indicates that the approximate method should not be used for asymmetric-plan systems with a 
large normalized supplemental damping eccentricity. 
 
The main objective of this study is to investigate the effectiveness of modal analysis for elastic one-way 
asymmetric buildings with supplemental damping by using the 2DOF modal equations, instead of single-
degree-of-freedom (SDOF) modal equations. The SDOF modal equation is obtained by neglecting the 
off-diagonal terms of transformed damping matrix. The 2DOF modal equation is obtained by resolving 
each diagonal element of mass, damping and stiffness matrices into a 2×2 matrix. Each 2DOF modal 
equation is represented by a corresponding 2DOF modal stick (Lin and Tsai 2006a). Moreover, the 
inelastic properties of each 2DOF stick can be determined by the corresponding push-over curves (Lin 
and Tsai 2006a). It is found that the proposed method can be applied for a much wider range of 
parameters without introducing significant errors; therefore, it improves the accuracy of modal analysis 
and is more appealing to design professionals for practical use. 
 

Theoretical Background 
 
SDOF Modal Equations 
 
The equation of motion for a typical N-story building where each floor is represented by a rigid diaphragm 
with two DOFs (one is translational DOF and the other one is rotational DOF) is: 
 

     (1)                           
 
where the M, C, K represent the mass, damping and stiffness matrices related to the deformation u(t), ι is 
the influence vector, and üg(t) is the ground acceleration. The damping matrix can be expressed as  
 

(2) 
 
where C0 is the inherent damping matrix and Csd is the damping matrix due to supplemental dampers. 
The matrix C0 is defined as  
 

gu&&&&& MιKuuCuM −=++

sdCCC += 0
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(3) 
 
in which α and β are determined from the damping ratios of two specific modes. The transformed 
damping matrix is equal to 
 

(4) 
 
in which φi is the ith mode shape of the undamped system. In general, the transformed damping matrix is 
not a diagonal matrix for structures with supplemental dampers. The approximate procedure is based on 
neglecting the off-diagonal terms of the transformed damping matrix. Therefore, Eq. 1 can be 
decomposed into 2N SDOF modal equations of motion: 
 

(5) 
 
in which Dn is the nth modal coordinate. The corresponding damping ratio, ξn, and the square of the 
circular frequency, ωn

2, are 
 
 

(6) 
 
By solving Eq. 5, the displacement history of the non-proportionally damped system is approximated as: 
 

(7) 
 
 
in which Γn is the nth modal participating factor defined as: 
 
 

(8) 
 
 
2DOF Modal Equations 
 
The construction and verification of 2DOF modal sticks corresponding to 2DOF modal equations for 
seismic analysis of inelastic asymmetric structures can be found in Lin and Tsai (2006a). Here, the 
application of 2DOF modal equations on one-way asymmetric elastic structures with supplemental 
damping is studied. The right-hand side of Eq. 1 is the seismic load and can be written as: 
 

(9) 
 
 
It is assumed that only the nth undamped modal displacement, un, of the non-proportionally damped 
system will be excited under the load, -snüg(t), thus,  
 

(10) 
 
The mass, damping and stiffness matrices shown in Eq. 10 are partitioned as: 
 
 

(11) 
 
 
in which m and I0 are the mass and moment of inertia of the building system, respectively. The subscript 
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z and θ, which are shown in Eq. 11, denote the sub-matrices relating to translational and rotational 
degree of freedoms, respectively. The nth undamped modal displacement is also partitioned as: 
 
 

(12) 
 
 
in which ϕzn and ϕθn are the components of the nth mode shape associated with translational and 
rotational DOFs, respectively. When Dzn is equal to Dθn, i.e. Dzn=Dθn=Dn, Eq. 12 is the same as the 

conventional definition of un. By pre-multiplying both sides of Eq. 10 with
T

Nn

zn

22 ×
⎥
⎦

⎤
⎢
⎣

⎡

θφ0
0φ

 and substituting 

Eq. 12 into it, Eq. 10 becomes  
 

(13) 
 
in which 
 
 
 
 
 

(14) 
 
 
Equation 13 is the nth modal equation of motion with two degrees of freedom. It has been mathematically 
proved that Eq. 13 is eventually equivalent to Eq. 5 for proportionally damped elastic systems (Lin and 
Tsai 2006a). Each 2DOF modal equation of motion, Eq. 13, can be modeled by a 2DOF stick with 
translational DOF, Dzn, and rotational DOF, Dθn (Lin and Tsai 2006a). Dzn and Dθn are denoted as modal 
translation and modal rotation of the nth mode, respectively. Furthermore, the modal damping matrix Cn 
given in Eq. 14 can be represented as: 
 
 

(15) 
 
 
If                           , then 
 
 
 

(16) 
 
 
Therefore, if KMC βα +≠ , then nnn KMC βα +≠ . 
 
It follows that a non-proportionally damped MDOF system will result in 2N non-proportionally damped 
2DOF modal equations with modal translation not equal to modal rotation even in an elastic state. This is 
closer to the actual condition. From the modal displacement history, Dn(t), which is solved by direct 
integration of Eq. 13, the total displacement history of the non-proportionally damped one-way 
asymmetric system is obtained as: 
 
 

(17) 
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The 2DOF modal stick has two sub-modes–one is active and the other one is spurious. The active one is 
the same as the conventional SDOF modal stick, and the spurious one has no contribution to the elastic 
responses of a proportionally damped 2DOF modal stick (Lin and Tsai 2006a). In addition, as shown in 
the above discussion, the 2DOF modal stick will be non-proportionally damped when the original MDOF 
structure is a non-proportionally damped system. Thus, the 2DOF modal stick can take the out-of-phase 
motions, which are between the modal translation and the modal rotation, into account.  
 
The 2DOF modal equations possess the property of non-proportional damping at the expense of 
increasing the DOF by one in the modal coordinate. However, this can be easily handled by commercially 
available structural analysis programs. Therefore, the proposed simplified method still keeps the 
advantage found in the conventional approximate method which has none of the difficulties associated 
with the use of complex numbers. 
 

Analytical Example 
 
Selected Structural System, Ground Motion and Basic Assumptions 
 
A one-story and a three-story asymmetric building with viscous dampers (Fig. 1) are analyzed by three 
methods. They include the direct integration of the equation of motion, modal analysis by SDOF and 
2DOF modal equations. The analysis of the same one-story building, but without dampers, is also carried 
out. The objective is to see whether or not the analytical results of the proportionally damped system 
obtained by modal analysis using 2DOF and SDOF modal equations are the same. All of the beams and 
columns are symmetric making the CR on the geometric center of each floor. It is assumed that CM is on 
the right side of the CR (see Fig. 1). Therefore, the left side of CR is the stiff side. It is found in this 
research that the analytical error resulting from the use of SDOF approach is greater when the center of 
supplemental damping (CSD) is on the stiff side of each floor. Thus, the CSD is purposely placed on the 
stiff side in the following examples in order to illustrate the accuracy of the proposed 2DOF approach. 
According to the investigation of error in response of the one-story asymmetric building (Goel 2001), the 
error introduced by conventional approximate method is over 20% when the normalized supplemental 
damping eccentricity, aee sdsd = , is equal to -0.5. The values of sde  and a  represent the distance from 
CM to CSD and the plan dimension of the system perpendicular to the ground motion, respectively. In 
this study, the CM is eccentrically such that the value of sde is equal to -0.75, which is appropriate for 
illustrating the effectiveness of the proposed simplified method. The damping coefficient of dampers, Cz, 
along the Z-axis is determined by the supplemental damping ratio, ξsd, (Goel 1998): 
 

(18) 
 
in which ωz is the circular frequency of transverse vibration. The supplemental damping ratios, ξsd, used 
in these two prototype buildings are both equal to 30%. The properties of the three buildings are shown in 
Table 1 to Table 4 in which the units are kN, m and sec. The nth column vector of matrix Φ shown in 
Table 2 and 4 is the nth mode shape, ϕn, of the MDOF building. Therefore, the sub-column vectors of the 
upper three elements and the lower three elements of ϕn, shown in Table 4, are equal to ϕzn and ϕθn, 
respectively. The matrix Φ shown in Table 2 and 4 has been normalized, which makes ΦTMΦ equal to an 
identity matrix. The diagonal elements of matrix ΦTCΦ and Λ, shown in Table 2 and 4, are the values of 
2ωnξn and ωn

2, respectively, which are used in each SDOF modal equation of motion given in Eq. 5.  
 
 
 
 
 

sdzz mC ξω2=
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Table 1. Properties of one-story buildings. 
 

 C 
 

M 
C0 Csd 

K 

9.45 0 8.10 3.09 0 0 4594 5176 w/o 
damper 0 23.03 3.09 42.02 0 0 5176 48547 

9.45 0 8.10 3.09 115.30 389.1 4594 5176 with 
damper 0 23.03 3.09 42.02 389.1 1313.3 5176 48547 

 
Table 2. The undamped eigenvectors, Φ, eigenvalues, Λ, and transformed damping matrix of one-story 

buildings. 
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θθ φφ
φφ zz
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⎦

⎤
⎢
⎣

⎡
2
2

2
1

0
0

ω
ω

 ΦTCΦ 

-0.319 -0.066 413.49 0 0.813 0 w/o damper 

0.042 -0.204 0 2180 0 1.868 

-0.319 -0.066 413.49 0 4.383 15.309 with damper 

0.042 -0.204 0 2180 15.309 67.525 

 
Table 3. Properties of three-story building. 

 
9.45  

0 9.45 symm.  
0 0 9.45  
0 0 0 23.03  
0 0 0 0 23.03  

M 

0 0 0 0 0 23.03 
12.214  

-13.785 32.24 symm.  
4.6137 -21.724 40.873  
10.784 -14.988 4.8543 78.188  

-14.988 32.664 -23.734 -99.789 221.99  

C0 

4.8543 -23.748 42.726 32.239 -156.33 283.92 
157.04  

-157.04 314.09 symm.  
0 -157.04 314.09  

-176.67 176.67 0 198.76  
176.67 -353.35 176.67 -198.76 397.52  

C 

Csd 

0 176.67 -353.35 0 -198.76 397.52 
6970  

-9740 21120 symm.  
3260 -15350 27220  
7620 -10590 3430 51200  

-10590 23080 -16770 -70510 1.53E+05  

K 

3430 -16780 30190 22780 -1.10E+05 1.97E+05 
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Table 4. The undamped eigenvectors, Φ, eigenvalues, Λ, and transformed damping matrix of three-story 

building. 
 

0.2466    
0.1748  0.0528 symm.  
0.0719  0.0203 -0.2028   

-0.0488  0.1574 -0.0367 -0.0133   
-0.0349  0.1124 0.0313 0.0391 -0.1033   

Φ= 

 

-0.0145  0.0469 0.0412 -0.0488 -0.1280  0.1434  
85.237   

0 362.18 symm.  
0 0 1000.1   
0 0 0 3443   
0 0 0 0 4188.2  
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2
1

00
00
00

ω

ω
O  

0 0 0 0 0 14168 
5.280    

-1.612  1.294 symm.  
3.220  -0.706 37.966   

-1.821  0.617 6.444 77.950   
-1.011  0.217 -12.003 -3.860 10.186   

ΦTCΦ 

 

0.585  -0.199 -2.159 -23.619 1.274  27.960  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1. (a) one-story building (b) three-story      Figure 2. 1940 El Centro earthquake NS component. 
             building (c) floor plan. 
 
The ground acceleration record used in this study is the NS component of 1940 El Centro earthquake 
shown in Fig. 2; it is scaled to peak ground acceleration (PGA) equal to 0.14g and 0.1g for one-story and 
three-story building, respectively. The ground acceleration record is applied along the Z-axis and all the 
buildings remain elastic. The floors are simulated as rigid diaphragms and, therefore, only the Z-axial 
translation and Y-axial rotation are considered in these analytical examples. Although real modes of the 
building are coupled in translation and rotation, by comparing the components of mode shapes, one can 
identify whether the mode is translational or rotational dominant. The inherent damping ratios of the two 
specific modes are assumed to be 2%. The noted two modes are the first Z-axial translation-dominant 
mode and the first Y-axial rotation-dominant mode. The inherent damping of the MDOF building is 
modeled by Rayleigh damping. 
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Seismic responses of one-story and three-story buildings 
 
In the following the results of response history obtained by direct integration of equation of motion, and 
modal analyses using SDOF and 2DOF modal equations are denoted as RHA, SMA and 2MA, 
respectively. The modal responses of the one-story building without viscous dampers obtained by 2MA 
are shown in Figs. 3(a) and 3(b). It is observed that the modal translation, Dzn, is equal to the modal 
rotation, Dθn, for proportionally damped elastic systems. Hence, the total responses of such a system, 
obtained by RHA, 2MA and SMA, are all the same, as shown in Figs. 3(c) and 3(d). The 2×2 Mn, Cn and 
Kn matrices, n=1~2, of the one-story building with viscous damper, defined in Eqs. (13) and (14), could be 
found in Lin and Tsai (2006b). The sum of the four elements of matrix Mn is equal to one. Additionally, the 
sums of the four elements of matrix Cn and Kn are equal to the value of the nth diagonal element of matrix 
ΦTCΦ and Λ, respectively (Lin and Tsai 2006b). The modal translation and rotation of the elastic one-
story building with viscous damper calculated by 2MA are no longer equal as shown in Figs. 4(a) and 4(b). 
This just reflects the non-proportional damping effect. The total response of this non-proportionally 
damped system, obtained by RHA, 2MA and SMA, are shown in Figs. 4(c) and 4(d). It is found that the 
analytical results obtained by 2MA are almost the same as those obtained by RHA. However, the errors 
in the peak translational and rotational responses obtained by SMA are up to 37.6% and 59.6%, 
respectively. 
 
The Mn, Cn and Kn matrices, n=1~6, of the three-story building, defined in Eqs. (13) and (14), could be 
found in Lin and Tsai (2006b). The sum of the four elements of matrix Mn is equal to one. Again, the sums 
of the four elements of matrix Cn and Kn are equal to the value of the nth diagonal element of matrix 
ΦTCΦ and Λ, respectively (Lin and Tsai 2006b). The first two modal responses of the three-story 
building with viscous dampers calculated by 2MA are shown in Figs. 5(a) and 5(b). The modal translation, 
Dzn, is not equal to modal rotation, Dθn, which reflects the non-proportional damping effect. The total 
responses of this non-proportionally damped system, obtained by 2MA and SMA, which are both 
compared with RHA, are shown in Figs. 5(c) and 5(d), respectively. It is found that the error in rotational 
response is larger than that in translational response obtained by SMA. The errors in the peak translation 
and rotation at roof are 1% and 16.4%, respectively. However, the analytical results obtained by 2MA are 
almost the same as those obtained by RHA.  
 
From the results obtained in these examples, it is seen that the 2DOF modal equations of motion 
possessing the non-proportional damping characteristic are more appropriate for the modal analysis of 
non-proportionally damped one-way asymmetric buildings. Furthermore, the incorrect prediction of 
translation and rotation at CM by SMA may amplify the error in the prediction of corner translation, which 
would diminish the applicability of the conventional approximate method to asymmetric structures. The 
proposed 2MA procedure provides a better alternative to deal with this kind of problem. 
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Figure 4. (a) 1st modal response of 2MA; (b) 2nd modal response of 2MA; (c) total response of 2MA and 

RHA; (d) total response of SMA and RHA for one-story building with damper. 
 

 
 
 
 
 
 
 
 

(a)                                                                                                (c) 
 

 
 
 
 
 
 
 

(b) (d) 
Figure 5. The (a) 1st (b) 2nd modal response of three-story building obtained by 2MA; Total translational 

and rotational response at the 3rd floor obtained by (c) 2MA and RHA (d) SMA and RHA. 
 

Conclusions 
 
This study develops a method of analyzing the seismic response of one-way asymmetric buildings with 
supplemental damping. The proposed method is similar to conventional modal analysis except that it is 
based on the solution of the 2DOF modal equations instead of SDOF modal equations. The 
proportionalities of damping matrices in 2DOF modal equations depend on that of the damping matrix for 
the original MDOF system. Hence, the method allows the modal translation and modal rotation in a 2DOF 
modal equation to be different from each other. The predicted response is closer to the realistic structural 
behavior, a result that could not be achieved by the use of conventional SDOF modal equation. The 
accuracy of the analytical result obtained by the proposed method is illustrated by three numerical 
examples in this study. The proposed method inherits the advantages of conventional modal analysis 
without the complexity of other developed procedures. The seismic analysis of non-proportionally 
damped two-way asymmetric building merits further study. 
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	Text1: Figure 3. (a) 1st modal response of 2MA; (b) 2nd modal response of 2MA; (c) total response of 2MA                  
	Text2: and RHA; (d) total response of SMA and RHA for one-story building without damper.


