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ABSTRACT 
 
A newer analysis technique called modal pushover analysis has been proposed recently for inelastic 
seismic analysis of multi-story buildings. In this method, the modal response of a structure is first obtained 
by subjecting the structure to pushover analyses using loads corresponding to different modal responses. 
The total response of the structure is then obtained by square-root-of-sum-of-square (SRSS) technique. 
This paper is concerned with the verification of the modal pushover analysis technique as applied to 
inelastic seismic response of a 40-story building. The first three modes of vibrations considered in this 
study. The story overturning moments obtained through the modal pushover analysis were compared to 
the corresponding moments obtained through the inelastic modal decomposition method, which indicated 
a good correlation between the two methods. The pushover analyses results were also compared to the 
corresponding results obtained through nonlinear direct integration time history analyses. The paper 
presents a detailed comparison between modal pushover analysis results and the inelastic modal 
decomposition results. Based on these comparisons the validity of the assumptions and approximations 
associated with the modal pushover analysis had been discussed. 
 

Introduction 
 
The nonlinear static seismic analysis and design procedure, known as the pushover analysis, uses a 
simplified nonlinear analysis to estimate the seismic demands of structures. This analysis method is 
based on the suggestion that the response of a multi degree of freedom structure can be related to the 
response of an equivalent single degree of freedom (SDOF) system. This implies that the response is 
controlled by a dominant single mode, and that the shape of this mode remains constant throughout the 
time history. Since the response of low-rise structures is generally dominated by the single mode of 
vibration, pushover analysis, in general, lead to good predictions of seismic demands of low-rise 
structures (Seneviratna and Krawinkler, 1997). Response of high-rise structures is, however, controlled 
by higher modes of vibrations. As the height of structures increases, the assumptions associated with the 
conventional pushover analysis become inappropriate. It has been found that for taller structures 
pushover analysis gives very different results compared to the time history analysis. Researchers have 
identified that the differences in results are due to the influence of higher modes of vibration 
(Sangarayakul and Warnitchai, 2004). 
 
Various studies have been conducted to improve the performance of a conventional pushover analysis 
when applied to multi-story structures. Some researchers (Bracci et al., 1997; Gupta and Kunnath, 2000)  
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have focused on an adaptive force distribution procedure. Chopra and Goel, (2002) presented a modal 
pushover analysis procedure to incorporate the higher mode effects on the seismic demands of high-rise 
structures. This procedure comprises of separate pushover analysis for each mode of vibration. These 
modal results are then combined by the square-root-of-sum-of-square (SRSS) combination rule. The 
modal pushover analysis procedure was evaluated by Chintanapakdee and Chopra, (2003) using three to 
eighteen-storyed framed buildings under various ground motions. The total responses (mainly story drift) 
were directly compared with the responses from nonlinear time history analysis, hereafter called as direct 
integration (DI) method. Since there were no other analysis tools available to evaluate the modal 
responses based on the modal pushover analysis procedure, the contribution of errors from separate 
modes was unclear. Recently, Sangarayakul and Warnitchai, (2004) have developed an approximate 
method for decomposing total inelastic dynamic responses of tall buildings into simple modal responses. 
Decomposed inelastic modal responses are advantageous to evaluate each mode demand estimated by 
the modal pushover analysis procedure. The primary objective of this study was to evaluate validity of the 
the modal pushover analysis using inelastic modal decomposition method.  
 

Modal Pushover Analysis and Underlying Assumptions 
 
The modal pushover analysis procedure consists of separate pushover analysis for each mode of 
vibration. It uses the force patterns similar to the corresponding elastic mode shapes. The modal 
pushover analysis procedure is based on several assumptions. The following assumptions were made 
during the development of modal pushover analysis procedure. 
 

• The coupling between modes arising from yielding of the system can be neglected. 
• The elastic mode-shapes-force-pattern can approximately produce inelastic modal displacements 

after the structure yields. 
• SRSS combination rule can be applied to combine inelastic modal responses. 
 

Most of these assumptions are necessary so as to be able to use the dynamic properties of elastic 
structures in an inelastic static analysis. But in reality, the structures may behave in a very different 
manner in the inelastic range. Therefore, errors may arise from the use of the above assumptions; 
however, these assumptions might be valid under certain circumstances. The modal pushover analysis 
procedure sounds intuitively plausible as long as the assumptions are valid. These assumptions are 
acceptable within the elastic limit. But beyond the elastic limit, these assumptions are not strictly valid. 
Note that in linear elastic system, response can be easily uncoupled by using modal matrix. Each modal 
response is independent to each other. For inelastic system, there might be strong contribution on modal 
response from other modes. These coupling between inelastic modal responses are neglected during the 
development of the modal pushover analysis procedure. But strong coupling has been observed, when 
the structure is subjected under some ground motions. The SRSS combination rule also misleads the 
results at the plastic hinges especially when the structure yields in more than one mode.  
 
Response History for Inelastic MDOF System 
 
The differential equations governing the response of a multistory inelastic building to horizontal 
earthquake ground motion are given by 
 

g+ + = - u (t)&& & &&smu cu f mi        (1) 
 and, 
 

  ( ,  )s sign= &sf f u u         (2) 
 
where,  u is the vector of N lateral floor displacements relative to the ground; m and  c are the mass and 

classical damping matrices of the system; i is influence vector whose each element  is equal to unity. sf  
represents the lateral resisting force vector induced by stiffness.  
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Expanding the displacements of the inelastic system in terms of the natural vibration modes of the 
corresponding linear system, we get 

 

  
1

( ) ( )
N

n n
n

t q t
=

= ∑u φ         (3) 

 
Initially mass, damping and stiffness of the structural element of the inelastic system can be defined by 
same as in elastic system. Hence mass- and classical damping-orthogonality property can be used for the 

inelastic system within the elastic range. Substituting Eq. 3 into 1, pre-multiplying by T
nφ  , and using 

orthogonality properties, we get 

2 ( )sn
n n n n n g

n

F
q q u t

M
ζ ω+ + = −Γ&& & &&       (4) 

 

where,   ( ,  ) ( ,  )sn sn n sF F sign signΤ= =& &q q f u uφ      (5)  
  

and,   
n

n
n

L
M

Γ = ,    n nL Τ= φ mi ,     n n nM Τ= φ φm      (6)  

  

The resisting force snF depends on the modal co-ordinates (t)nq , implying coupling of modal co-
ordinates because of yielding of the structure. 

      
Target Roof Displacements 

 
The basis for developing a modal pushover analysis procedure is the uncoupled modal response history 

analysis procedure. It is assumed that coupling between modal co-ordinates (t)nq  arising from yielding 
of the system can be neglected. Note that resisting force in Eq. 5 depends upon modal co-ordinate vector 
q  and sign of its derivative &q . But the assumption implies that nth mode modal co-ordinate (t)nq has 

dominant contribution to develop resisting force in corresponding mode. The effects of other modes can 

be neglected. Hence resisting force for nth snF  can be only the function of nq  and sign of nq& .    Then 
the Eq. 5 can be written as, 
 

( ,  )sn sn n nF F q sign q= &        (7)  

With this simplification and replacing ( )nq t by ( )n nD tΓ , Eq. 4 can be rewritten in the form of nth mode 
inelastic SDOF system as follows. 

2 ( )sn
n n n n g

n

F
D D u t

L
ζ ω+ + = −&& & &&        (8) 

where,  
( ,  ) ( ,  )}sn sn n n n s n nF F D sign D D sign DΤ= =& &φ f     (9) 

 
Eq. 8 represents the equation of motion for an inelastic SDOF system. Here, nζ  and  nω  may be 
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interpreted as natural frequency and damping ratio of the nth-mode of corresponding linear MDOF system. 
Eq. 9 gives force deformation relation of nth-mode inelastic SDOF system.  Solution of Eqs. 8 and 9 
through out the time domain is termed as modal response history analysis procedure procedure. Then the 
target roof displacement for nth mode is determined by,  
 

 rno n rn nu Dφ= Γ         (10) 
where,   

 max ( )n nD D t=         (11) 
 
Now, the pushover analysis for each mode is performed where the structure is subjected to monotonically 
increasing lateral forces associated with nth mode with an invariant height-wise distribution until the target 
roof displacement of corresponding mode, urno, is reached. Note that in linear elastic system, contribution 
on nth mode from other modes becomes zero. But for inelastic system there may have significant 
contribution on modal response from other modes. Such possible contributions from other modes are 
neglected during the development of modal pushover analysis procedure. As a result, it may lead for a 
possible source of significant error in modal pushover analysis procedure. 
 

 
Evaluation Techniques 

 
Inelastic Modal Decomposition 
 
The inelastic modal decomposition was used to decompose total inelastic dynamic responses of wall 
buildings into approximate modal responses. The method is based on the equivalent linear concept, 
where a nonlinear structure is represented by a set of equivalent linear models.  One linear model is used 
for representing only one vibration mode of the nonlinear structure. Linear properties of models are 
determined with the help of total inelastic response from nonlinear time history analysis. The mode shape 
and modal properties (frequency, damping, etc) of each individual mode are directly identified from the 
inelastic response time histories. The inelastic modal decomposition method was used, here, for the 
evaluation of the MPA procedure. 
 
Properties of Linear Models 
 
A 40-storyed wall building was modeled by a simplified lumped mass system as shown in Figs. 1 (a) and 
(b). The structural modeling of this building is described later.  Inelastic modal responses of this simplified 
system are represented by series of linear models shown in Fig. 1 (c). Linear model used here are 
Bernoulli-Euler cantilever beam having distributed physical properties. The beam span is divided into the 
plastic hinge region ( 0 px l≤ ≤ ), and the remainder, elastic region ( pl x h< ≤ ). Within each region, the 
flexural stiffness EI, the mass per unit length μ  , and the stiffness-proportional damping G are uniformly 

distributed. The governing equation for such system under the ground motion  ( )gu t&&  is given by, 

 

0
iv iv

gu a u Gu EIu uμ μ μ+ + + = −&& & & &&       (12) 

where 
for
for 0

e p

p p

EI l x h
EI

EI x l
< ≤⎧⎪= ⎨ ≤ ≤⎪⎩

      (13) 
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 and 
1

1

for
for 0

e p

e p p

a EI l x h
G

a EI c EI x l
< ≤⎧⎪=⎨ + ≤ ≤⎪⎩

   (14) 

where u(x,t) is the transverse displacement response relative to the base.  Primes and Roman numeral 
denote an x derivative and over-dots denote a time derivative.  When the responses are confined within 
the limit of linear elastic behavior, EIp in the plastic hinge region is equal to EIe, and the damping factor c is 
zero. Eq. 12 then represents a uniform cantilever beam with the Rayleigh damping applied proportionally 
to mass and stiffness via the factors a0 and a1 respectively.  These factors are assigned such that a 
damping ratio of 5% is obtained in the first two modes.  When the responses exceed the elastic limit, 
normally the flexural rigidity in the plastic hinge zone decreases (EIp ≤EIe) and the additional damping 
factor c increases ( 0c ≥ ). Eq. 12 can only be solved using complex mode analysis 
 
Initially, the EIp and c of linear models are unknown. To consider responses of n mode, we have to solve n 
sets of Eq. 12. First three modes were considered in this study. We have n equations to solve for 2n 
variables (n numbers of EIp and n numbers of c). It is not possible to solve such equations by straight 
forward manner. One possible way is to iterate these 2n parameter values until the sum of all modal 
responses computed from these n linear models best match with the total inelastic response computed 
from the nonlinear time history analysis.  The response quantity used here in this matching is bending 
moment. The index to quantify the accuracy of the matching is therefore given by: 

 [ ] 2

0

( , ) ( , )
b

a

t h

M E
t

M x t M x t dx dte = −∫ ∫    (15) 

where MM is the total bending moment computed from nonlinear time history analysis, ME  is the sum of 
modal bending moments computed from n equivalent linear models, ta is the starting time of the first cycle 
of flexural yielding, and tb is the ending time of the last cycle of flexural yielding. 

 
The parameter identification begins by assuming the initial values of EIpi and ci of each equivalent linear 
model, where i = 1 to n.  The corresponding equations of motion of the form shown by Eq. 12 are then 
solved, and the corresponding coordinates ui(x,t) are obtained.  By this way, bending moment contributed 
by the ith mode, MEi, can be determined.  Once all modal bending moment from n equivalent linear models 
are determined, the total bending moment (ME) can be computed by: 

 

1

1

1

( , )        for
( , ) ( , )

( , ) ( , )  for 0

n

e i pn
i

E Ei n
i

pi i i pi i p
i

EI u x t l x h
M x t M x t

EI u x t c EI u x t x l

=

=

=

⎧ ′′ < ≤⎪⎪= = ⎨
⎪ ′′ ′′+ ≤ ≤
⎪⎩

∑
∑

∑ &
 (16) 

At this stage, the index e can be computed by using Eq. 15.  If e is higher than an acceptable value, then 
all 2n parameter values will be adjusted and the whole process will be repeated until the acceptable value 
of e is attained.   
 
Modal Responses 
 
Best parameters EIp and c of each linear model that minimize the value of e in Eq. 15, are used to 
compute model responses. With these parameter Eq. 12 is solved using complex mode analysis to get 
modal displacement time history, u(x,t). Other modal responses time history (moment M(x,t) and shear 
V(x,t)) are computed by, 

 ( , ) ( , )i iM x t EI u x t′′=   and    ( , ) ( , )i iV x t EI u x t′′′=    (17) 
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Numerical Investigation 
 

Structural Modeling 
 
A forty-story building was selected 
for the case study. Height of each 
floor was set as 3.65 meter. The 
structural configuration was 
assumed in such a way that the 
lateral-load-resisting system was 
provided by slender reinforced 
concrete structural walls and the 
gravity-load-carrying system was 
provided by building frames. 
Modes of lateral deformation were 
generally controlled by flexural 
bending of walls because the 
lateral stiffness of walls was 
normally much higher than that of 
the frames. The building was 
modeled as a vertical cantilever 
beam with equal masses lumped 
at each story level as shown in 
Fig. 1 (b). Beam elements were 
used to model the section of wall 
between adjacent floors. To 
achieve the desirable modes of 
inelastic deformation, a ductile 
flexural plastic hinge zone was 
allowed to form only at the base of 
the structure when the yield 
moment, My, was exceeded. It is 
expected that the propagation of 
plastic hinge is limited up to 10% 
of the total height from the base. 
Well known bilinear material model 
with 5% strain hardening was used 
to represent the hysteretic inelastic 
moment–rotation relation for all 
plastic hinges. The structure 
considered in this study was 
designed in accordance with UBC, 
(1997). The fundamental period of 
structure assumed to be equal to 
the value given by Uniform 
Building Code, i.e. T = 0.0488 h3/4, 
where h is the total wall height in 
meters. The viscous damping was 
represented by Rayleigh damping, 
with 5% damping ratio in the first 
two modes. SAP-2000, structure 
analysis software, was used for 
the modal pushover analysis. 
Nonlinear time history analysis was carried out using DRAIN-2DX. 

Figure 1.  (a) wall building; (b) simplified model; (c) equivalent linear 
wall model. 
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Figure 2. Moment demand under the ANFS x 1.4 ground motion.
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Results and Discussions 
 
Investigation on the modal pushover analysis procedure begins with the Northridge (Arleta-Nordhoff Fire 
Station), ANFS, ground motion. The ground motion was scaled by 1.4 to achieve sufficient inelastic 
deformation such that ductility of equivalent first mode single degree of freedom, μ  (SDOF), becomes 
nearly 2.0.  Fig. 2 depicts the story overturning moment demands of the structure along its height. Total 
responses are also presented with inelastic time history analysis results. Results from both modal 
pushover analysis and modal decomposition exhibit general matching and the total overturning moments 
are also well estimated except at the base. Even though base moment demand estimation by the MPA 
procedure and MD are similar, they are significantly higher than the results from nonlinear time history 
analysis. The SRSS combination rule was applied to get total demand from modal demand. The 
overestimation of base moment demand can be explained by the possible error on the SRSS combination 
rule. The total moment remains constant to yield moment (My) at the plastic hinges in inelastic range. But 
MPA uses same structure for all mode of analysis with out considering the effect of one mode response to 
another mode. Hence, the structure considered for second mode still may remains elastic and moment 
can still increase even though the first mode is already yielded. In this way, significant error on total 
moment appears immediately after the yielding of structure in first mode. The structure also can yield in 
first and second mode separately under the strong ground motions. Considering only two fundamental 
modes and assuming that the structure is yielded in both modes, the total base moment is given as 

2 2 1.414*y y yM M M+ = . But it is not possible to increase total moment beyond the yield moment. 

However, it can be increased by small amount due to strain hardening. This confirms that the one source 
of error in moment demand at plastic hinge zone is SRSS combination rule which may overestimate the 
moment by 41% when two yielded modes are considered. Additions of the responses from higher modes 
further contribute on overestimation in responses at the plastic hinges.  
 
Base moment envelop was computed and has been given in Fig. 3.  It is observed that the results from 
the MPA procedure and MD are quite matching with nonlinear time history analysis within the elastic 
range.  The MPA and MD results start to divert when the total moment reaches to yield moment. Structure 
starts to yield in first mode at scale factor equal to 0.8. Note that modal response seems still elastic when 
total moment reaches yield 
moment.  Therefore, 
significant error on the 
MPA starts to appear 
immediately after the total 
moment equal to yield 
moment.  The error 
continues to increase until 
the structure yields in 
second mode. After that, 
error remains almost 
constant (40-50%). Third 
mode moment is 
comparatively less. 
Therefore, there is no 
significant increment in 
total moment after the 
structure yields in second 
mode.  On the other hand, 
it was observed that the 
SRSS combination rule 
seems reasonably 
acceptable for the 
estimation of shear at 
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Figure 3. Base moment envelope under the ANFS x 1.4 ground motion. 
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plastic hinge zone. It is due to 
the fact that shear can still 
increase at plastic hinge when 
the moment reaches to yield 
value. The results for shear, 
however, are not shown here.  
Contrary to the results under the 
ANFS ground motion, modal 
demands are significantly 
differing when structure is 
subjected to Lomaprieta (Gilroy 
Array #3 station), LP-GA3 
ground motion. LP-GA3 ground 
motion was normalized by a 
scale factor 1.2. Responses 
based on these analyses are 
presented in Fig. 4 and 5. It can 
be observed that the MPA 
procedure shows significant 
error in upper stories for LP-
GA3 ground motion. The error 
was even more for the storey 
shear. 
 
From the results obtained from 
inelastic modal decomposition, 
it can be observed that the 
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Figure 5.  Base moment envelope under the LP-GA3 x 1.2 ground motion. 

806



inelastic modal responses 
are uncoupled each other 
when the structure is 
subjected under ANFS 
ground motion. But, inelastic 
modal responses are strongly 
coupled each other when the 
structure is subjected under 
LP-GA3 ground motion. In 
other words, when the 
structure yields in the first 
mode, it gives yielding effect 
on second mode. Modal 
pushover analysis cannot 
identify the coupling effect 
between the modes, because 
it uses separate models for 
each mode of analysis.  

   
Furthermore, a comparative 
study of modal time history 
response of two (ANFS and 
LP-GA3) ground motion was 
carried out. Fig. 6 (a) shows 
the first and second mode 
base moment time history for 
ANFS ground motion. It is 
observed from Fig. 6 (a) that 
the peak responses for the 
first and the second mode lie 
at two separate time instant. 
For the first mode, the peak 
response occurs after 7 sec. 
But the second mode peak 
response occurs before 7 
sec, where the first mode 
response is very low. Hence, 
the time instant for two modal 
peak responses are well 
separated. Therefore, there is 
no strong coupling between 
two modal peak responses. 
This is the case in which 
modal pushover analysis 
seems to be working well. 
 
Fig. 6 (b) depicts the modal 
time history response of the 
structure under LP-GA3 ground motion.  The modal time history response of the structure under LP-GA3 
shows that the first and second mode responses reach to peak at the same time instant (5.5 sec). The 
second mode response gets yielding effect from the first mode. Therefore the second mode response 
diverts from the linear response at the scale factor of 0.4, even though the second mode base moment is 
very less than yield moment. Modal pushover analysis is unable to consider this coupling effect. For such 
ground motion the MPA procedure seems not to be working properly. 
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building subjected on 
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Conclusions 
 
Recently developed modal pushover analysis (MPA) procedure seems to be capable of giving significantly 
improved results over the conventional pushover analysis. The MPA procedure is based on several 
assumptions and approximations. Most of these assumptions are made to use dynamic properties of 
elastic structures.  But, the structures may behave in a very different manner in the inelastic range. 
Sometimes, the MPA procedure is known to show significant errors. These errors arise from assumptions 
and approximations. It is observed that accuracy on the MPA procedure and reliability of assumptions 
extensively depends upon the ground motion characteristics. The modal pushover analysis procedure 
assumes that the coupling between modes arising from yielding of the system can be neglected. This 
assumption seems valid when peak of modal responses occurs at different time instant.  Modal pushover 
analysis seems very accurate for ground motions that have peak modal responses at different time 
instant. 
 
Results from the modal pushover analysis procedure may be misleading for the ground motions that have 
peak modal responses at the same time instant. The errors are mainly due to the assumption of 
uncoupling of modal responses. For some ground motions, modal properties of higher modes may 
significantly change due to yielding of first mode. Effect of coupling becomes more important when the 
contribution on the response from the higher mode is significant (e.g., storey shear for high-rise 
structures). Use of the SRSS combination rule seems to be acceptable with some exceptions. The 
moment on the plastic hinge zone is significantly over estimated for strong ground motion due to the 
SRSS combination rule. 
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