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ABSTRACT 
 
This paper presents the development of new design equations in the CSA standard A23.3-04, for 
determination of confinement reinforcement for ductile and moderately ductile earthquake-resistant 
rectangular and circular columns and walls. These equations are based on performance measured in 
terms of curvature demand, and are developed from parametric studies relating confinement 
reinforcement to the level of sectional ductility and account for concrete strength, transverse 
reinforcement yield strength, axial load level, and transverse confinement reinforcement spatial 
distribution.  
 

Introduction 
 
Transverse reinforcement specified in design codes for beams and columns has three main functions: (i) 
prevent buckling of longitudinal bars, (ii) avoid shear failure, and (iii) confine the concrete core to provide 
sufficient deformability or ductility. These three actions are typically considered separately in design 
codes (ACI-318 2005, CSA-A23.3 2004, NZS-3101 1995). This paper addresses only the confinement 
requirements. The confinement reinforcement in the current ACI Code is based on the work of Richart 
et al. (1929) and was developed so that the compressive strength of the confined core of a column after 
spalling should be equal to the strength of the gross section of the column before spalling. The resulting 
confinement reinforcement requirements are only a function of the ratio of gross area of column section to 
area of concrete core and the ratio of the specified compressive strength of concrete and the specified 
yield strength of transverse reinforcement. In the CSA Standard (1994), columns in ductile frame had to 
comply with the same confinement requirements as specified in the ACI Code (2005). These 
requirements have been shown to be inadequate (Paultre et al. 2006) and new equations were 
developed for the 2004 CSA-A23.3 Standard. The objective of this article is to describe how these 
equations were developed. 
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Predicting Ductility of Columns 
 
Paultre et al. 2006 showed that the main parameters influencing the curvature ductility capacity, ϕµ of a 

column are the axial load level 0pk P P= and the effective confinement index e le cI f f′ ′ ′= , where P  is 

the applied axial force on the column, 0P  is the axial capacity of the column ( 0 0.85 g c s yP A f A f′= + ), cf ′  
is the concrete strength, lef ′  is the effective confinement pressure at peak stress which is a measure of 
the restraint applied by the stirrups to the expansion of the confined concrete core under compression. 
For a circular column, lef ′  is given by: 

 
1
2le e s hf K fρ′ ′=  (1) 

while for rectangular columns in the y  direction (see Fig. 1), lef ′  is given by: 
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where eK  is the geometric confinement effectiveness coefficient, which measures the effectiveness of 
the confinement reinforcement to confine concrete and varies from 1 for a continuous tube to 0 when ties 
are spaced more than half the core cross section minimum dimension, shyA  is the total section of 

confinement reinforcement for the set of ties in direction y ; yc  is the cross-section dimension in direction 

y , measured center-to-center of peripheral ties or spiral; s  is the center-to-center spacing between ties; 

sρ  is the ratio of volume of spiral reinforcement to total volume of core, measured center-to-center of 

spiral and hf ′  is the stress in the confinement reinforcement at peak stress. Details for the determination 

of hf ′  can be found in Légeron and Paultre (2003). It has been demonstrated by Cusson and Paultre 
(1994) and Paultre et al. (2001) that the confinement reinforcement does not always reach yield at peak 
concrete stress. Azizinamini et al. (1994) have demonstrated that high-yield strength steel in certain 
cases do not provide any significant ductility improvements for columns under constant axial load and 
reversed flexure. 
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Figure 1.    Arching effect. 
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Using a numerical parametric study, Paultre et al. 2006 showed that the curvature ductility and axial load 
level can be related directly to effective confinement index as: 
 0.0111e pI k ϕµ′ =  (3) 

It is interesting to note that within the limit of the variables considered in the parametric study, the 
concrete strength, the volumetric ratio of longitudinal reinforcement, the yield strength of reinforcement 
and the size of the column were found to have only limited influences on curvature ductility and that the 
most important parameters controlling ductility are the effective confinement index and the relative level 
of axial load. This is consistent with experimental evidence (Légeron and Paultre 2000). 
 

Design Equations for Confinement Reinforcement 
 
Equation (3) can be used for displacement based or performance based seismic design. Typical 
structures are designed with the elastic seismic forces divided by a force reduction factor that accounts 
for the ductility and overstrength of the structure. Local ductility contributes to overall displacement 
ductility, and is ensured for columns primarily by a sufficient amount and arrangement of confinement 
reinforcement at potential plastic hinge locations. The objective of this section is to develop simplified 
design equations providing directly shA  or sρ  for two different levels of ductility, which in this research are 
targeted as (i) moderate ductility level corresponding to a ductility-related force modification factor of 2.5 
and curvature ductility factor ϕµ  of at least 10 and (ii) ductile level corresponding to a ductility-related 

force modification factor of 4 and curvature ductility factor ϕµ  of at least 16. These ductility levels are 

consistent with the National Building Code of Canada (2005). Replacing these values of ϕµ  in Eq. (3), 

the required effective confinement index for a ductile structure is: 
 0.178e pI k′ =  (4) 

and, for structures with moderate ductility 
 0.111e pI k′ =  (5) 

To obtain simplified design equations relating to sρ  or shA  from Eqs. (1), (2), (4) and (5), eK  and hf ′  
must be expressed in simple forms. The two following sections will aim for this purpose. 
 
Geometric Coefficient of Confinement Effectiveness, eK  
 
The geometric coefficient of confinement effectiveness used here was first proposed by Sheikh and 
Uzumeri (1982), and latter modified by Mander et al. (1984). For rectangular columns its expression is: 

 

2

1 1 1
6 2 2

0
1

i

x y x y
e

cc

w s s
c c c c

K
ρ

    ′ ′
− − −           = ≥

−

∑
 (6) 

where all the all the dimensions are explained in Fig. 1. For circular columns confined with spiral, Mander 
et al. (1984) proposed a similar expression. It is convenient to divide the geometric coefficient of 
confinement effectiveness into two parts: (i) an horizontal arching coefficient, hK , and (ii) a vertical 

arching coefficient, vK , such that: 

 vhe KKK =  (7) 
For members with rectangular hoops, the horizontal arching coefficient can be written: 
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and for members with circular hoops or spirals, 1hK = . It is possible to simplify equation Eq. (8) for 
square columns with longitudinal reinforcement distributed regularly as  

 
21h
l

K
n

= −  (9) 

At the design stage, many parameters are not yet known and the approximation given by Eq. (9) is 
sufficient for rectangular columns. 
 
The expressions for vK  depends on the spacing of ties, hoops or pitch of spirals which is one of the 

desired quantity with shA  for rectangular columns or part of the unknown sρ  for circular columns. The 

solution would therefore require iterations which is clearly impractical. Conservative values of vK  for 
columns respecting all the minimum requirements in ACI and CSA codes could be used instead. A 
minimum for vK  should be sought as this would result in conservative amounts of confinement 

reinforcement. To arrive at a conservative expression for vK , more than 500 different columns have been 
investigated using minimum transverse reinforcement required by ACI and CSA Codes. For rectangular 
and square columns, a conservative expression for vK  as a function of the ratio sh gA A  can be found as 

shown in Fig. 2 for fully ductile square and rectangular columns ( 16ϕµ = ) and: 

 1.05 ch
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=   

 
 (10) 

 

 
 

Figure 2.    vK  coefficient for square and rectangular columns with 16ϕµ = . 
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For rectangular or square columns in a moment-resisting frame with moderate ductility, i.e., 10ϕµ = , we 

can find similarly: 
 

 0.95 ch
v

g

AK
A

 
=   

 
 (11) 

For circular columns with spiral reinforcement for ductile moment-resisting frame or moment-resisting 
frame with nominal ductility, vK  is always greater than 0.90 and is used hereafter. 
 
Effective Stress in Confinement Steel 
 
It has been experimentally demonstrated by Paultre et al. (2001), and explained by Légeron and Paultre 
(2003) that the yield strength of ties are not fully used for confinement effect. Therefore, it is necessary to 
use an effective stress instead of the yield stress when determining confinement reinforcement. Légeron 
and Paultre (2003) have proposed expressions to accurately determine the effective transverse 
reinforcement stress, hf ′ , at peak strength. Using this expression, hf ′  is calculated for a number of 
columns reinforced with only non confinement minimum transverse reinforcement for columns required by 
ACI and CSA Codes. It is found (Paultre et al. 2006) that h yhf f′  for circular columns and that for 

rectangular columns 0.83h yhf f′ =  when 16ϕµ =  and 0.68h yhf f′ =  when 10ϕµ = , assuming 

400 MPayhf = . 

 
Implementation in CSA Standard for Circular Columns 
 
From Eqs. (4) and using simplifications described in the previous two subsections, we obtain the following 
equations for sρ  for circular columns with 16ϕµ = : 

 
0.356

0.40
0.9

p c c
s p

yh yh

k f fk
f f

ρ
′ ′

= =  (12) 

This equation has been adopted directly in the new edition of the Canadian Standard (CSA A23.3 2004) 
for circular columns in ductile moment resisting frames. It is noted that the concrete core area is 
measured to the outside diameter of the spiral which provides some additional conservatism. 
 
For circular columns part of moment resisting frame with moderate ductility ( 10ϕµ = ) we have: 

 0.3 c
s p

yh

fk
f

ρ
′

=  (13) 

where the coefficient 0.3 has been rounded from 0.25. 
 
Implementation in CSA Standard for Square and Rectangular Columns 
 
From Eqs.(4) and using simplifications described previously, we obtain the following equations for shyA  

for square or rectangular columns with 16ϕµ = : 
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where 1/ ( 2)n h l lk K n n= = − . Equation (14) was adopted in the Canadian Standard (CSA A23.3 2004) 
for rectangular columns forming part of a ductile moment resisting frame with the exception that in CSA 
Standard ch  replaces yc  and together with chA  these dimensions are measured to outside of peripheral 

hoops. In addition to the amounts required by Eq. (14), the minimum for large columns was carried from 
previous CSA Standard as: 

 0.09 c
shy c

yh

fA sh
f
′

=  (15) 

For columns in moment resisting frames with moderate ductility ( 10ϕµ = ), from Eqs. (5) and previous 

simplifications: 

 0.15 g c
shy n p c

ch yh

A fA k k sh
A f

′
=  (16) 

where the coefficient 0.15 was rounded down from 0.17 as it was found to give ample safety for most 
cases of practical interest. Therefore, for moderately ductile columns, the total effective area in each of 
the principal directions of the cross section within spacing s  of rectangular hoop reinforcement shall not 
be less than the amounts required by Eq. (16) and Eq. (15). 
 

Comparison with Existing Codes and Experimental Data 
 
Figure 3 compares the confinement reinforcement requirements for two 500 mm-square columns and two 
1000 mm-square columns. It is seen that for small axial loads the proposed equations require less 
reinforcement than the current ACI and the 1994 CSA codes, but for high axial load, it is the contrary. 
This is consistent with experimental evidence. The proposed equations, although simpler, give 
comparable results to the requirements in the New Zealand Standard. For small circular columns, the 
minimum requirement for non seismic design controls most of the time. For large circular columns, the 
proposed equations result in more confinement reinforcement, which is similar to the New Zealand 
Standard.  
 
In order to validate the equations previously developed, comparison of displacement ductility of 60 
columns to percentage of compliance to Eqs. (12) and (14) as well as to the confinement reinforcement 
required by the ACI Code are presented in Figures 4 and 5. The 60 columns have been tested by Sheikh 
and Khoury (1993), Watson and Park (1994), Sheikh et al. (1994),  Li et al. (1994), Bayrak and Sheikh 
(1998), Légeron and Paultre (2000), Paultre et al. (2001), Robles et al. (2003) and Saatcioglu and Baingo 
(1999). As a reference, the required displacement ductility for a column forming part of a ductile frame is 
supposed to be at least 4. The vertical dotted line in Figs. 4 and 5 corresponds to the limit between 
compliance and non compliance to amount of confinement reinforcement recommended in codes. 
Column specimens falling on the left do not comply with the quantity of transverse confinement 
reinforcement required by a specific code. The horizontal dotted line corresponds to the limit between 
ductile and non ductile behavior, the limit being set in this case is a displacement ductility of 4. Columns 
above this line are ductile enough to be part of a ductile moment frame. The set of two dotted lines divide 
the space into four quadrants. Columns should theoretically be in the upper right corner, i.e., they have 
enough reinforcement according to the code and behave in a ductile manner or in the lower left corner, 
i.e., they have insufficient confinement reinforcement according to code and behave in a non-ductile 
manner. As codes are conservative overall, it is not surprising to find columns in the upper left corner. 
However, no column should be in the lower right corner, meaning they have the required quantity of 
confinement reinforcement according to the code, but do not display enough ductility. 
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The CSA 2004 equations are a great improvement compared to those in the current ACI Code and the 
1994 CSA Standard as seen in Figures 4 and 5. They provide both more economical and safer design. 
They are also more satisfactory since they are based on a rational method that links directly performance 
measured by curvature ductility to requirement for confinement and are validated on experimental results 
on a large number of columns.  
 

 
 

Figure 3.    Comparison between confinement reinforcement ratios required by ACI Code and NZS and 
CSA Standards for square columns. 

 
It is important to note here that the relation between experimental ductility and the level of compliance to 
confinement reinforcement requirements shall not be understood as direct. In fact the proposed equations 
are supposed to be safe and conservative in all cases. In some cases, they may underestimate slightly 
the actual displacement ductility. Simple equations cannot provide more than what they are intended for: 
to be conservative in most cases. As well, the approach is related only to confinement, and other factors 
may alter experimental behavior, namely buckling of longitudinal bars and insufficient shear strength. In 
addition, all authors do not measure ductility in the same way, which makes it difficult to compare results. 
If the engineer is interested to know exactly the level of ductility, he must use a complete approach as 
described in Légeron (2001), Légeron and Paultre (2003) or Dodd and Cook (1992) and not only base his 
design on code equations. 
 

Confinement Reinforcement for Concentrated Reinforcement in Walls 
 
Concentrated reinforcing bars at the ends of walls must be tied by hoops in accordance with the 
requirements for conventional construction and in the region of plastic hinging the hoop spacing shall not 
exceed the smallest of (a) six longitudinal bar diameters, (b) 24 tie diameters, (c) one-half the least 
dimension of the member and (d) additional requirements if the maximum compressive strain cuε , 
exceeds 0.0035. 
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Figure 4.    Comparison between degree of compliance to amount of confinement reinforcement required 
                 by new CSA Standard to achieved displacement ductility of columns. 
 

 
 

Figure 5.    Comparison between degree of compliance to quantity of confinement reinforcement required 
by ACI Code to achieve displacement ductility of columns. 
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The confinement expression for columns given in Eq. (14) expresses the amount of confinement 
reinforcement required as a function of the level of axial load in columns. The confinement expression for 
concentrated reinforcement at the ends of walls uses the maximum concrete compressive strain in the 
wall instead of the level of axial load as the main parameter. The equivalent factor for the level of axial 
load, pk , is given by 0.1 30p cuk ε= + . When cuε equals 0.0035 no additional confinement reinforcement 

is required, as cuε  increases from 0.0035 to the maximum concrete compressive strain permitted of 

0.014, the equivalent value of pk  varies from about 0.20 (equivalent to a lightly loaded column) to about 

0.50 (representative of a heavily loaded column). 
 
Because of the significant compressive strain gradient in walls it is necessary to provide requirements for 
the length over which confinement is required, given by ( )0.0035cu cuc ε ε− , where c  is the depth of 

compression in the wall.  When cuε  equals 0.0035 this length is zero (i.e., no confinement reinforcement 

is required) and when cuε  equals the maximum permitted value of 0.014 the required length over which 

confinement reinforcement is equal to 0.75c . 
 

Conclusions 
 
At this moment, high-strength steel is not used widely in construction. Should this change, the framework 
of the proposed equations will adequately take into account high-yield strength steel. By suppressing all 
limits on yield strength in exchange for calculation of effectiveness of confinement steel, use of very high 
strength steel might be possible, which might prove very useful for high axially loaded columns of high-
rise buildings using high-strength concrete. The overall work presented in this paper can be used in 
ductility based design, as described in this paper and included in CSA standard A23.3-04, or 
displacement based design. By considerably simplifying design, this should favor the use of these rational 
methods of design for a wide range of structures.  
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