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ABSTRACT 
 
An active control scheme using ANN is presented for seismic control of building frames for future 
earthquakes. It is based on the premise that if the desired control force and the future earthquake 
excitations have the similar frequency content it is likely that the control force of the system will be most 
effective. The control scheme developed has the advantage that it can consider limited number of 
feedback measurements, time delay effect, and target reduction in response. The ANN control scheme 
requires feedback responses (displacement, velocity and acceleration), ground excitation and a target 
percentage reduction as inputs to the ANN. The output of the ANN is the time history of control force. A 
ten-storey building frame is taken as an illustrative example. Feedback responses are taken from 1st, 5th 
and 10th storeys of the frame. The control is affected by a single control force applied at the top of the 
building frame with AMD. The results of the study show that (i) the control scheme is very effective in 
controlling the response of the building frame for excitations under El Centro earthquake taken as an 
unknown problem; (ii) The peak control force required to obtain a significant percentage reduction in 
response is not very large.; and (iii) Time delay (of the order of 2�t; �t time step interval) does not 
significantly deteriorate the performance of control scheme. 
  
  

   Introduction 
 
Active control of building frames using artificial neural net (ANN) has been a subject of intensive research 
in the recent past. In the earlier works (Ghaboussi and Joghataie 1995, Chung et al. 1989, 1997, Bani-
Hani and Ghaboussi 1998, Yu-Ao He and Jianjun 1998) neural nets were trained with and without 
emulator network. Whenever emulator network is used, the training of neural net becomes extensive. 
There have also been attempts to use fuzzy rules with ANN for control of structures (Joghataie and 
Ghaboussi 1994, Tani et al., 1998). Not much work on the use of ANN for structural control using single 
ANN and limited measurements of feedback responses with direct incorporation of time delay effect, and 
a target percentage reduction are reported in the literature. Keeping these in view, a simple ANN based 
control scheme using a single ANN is presented here. It is capable of handling directly the time delay 
effect, working with a limited number of feedback measurements and providing a target reduction of 
response quantity of interest.  The proposed method is developed and tested for multistorey frame 
controlled by an AMD placed at its top. The effectiveness of the control scheme is evaluated by taking a 
10-storey building frame as an illustrative example. 
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Theory 
 
The control scheme is illustrated with the help of a multistorey building frame as shown in Fig 1. The 
control force is applied at the top of the frame using an AMD. The feedback responses, measured from 
three points, are shown in the figure. Inputs to the ANN are the feedback controlled responses from the 
three points, the ground acceleration and the target percentage reduction of the top storey displacement 
response. 
The controlled responses are obtained by solving the following equation of motion: 
 

 uHxIMYKYCYM g +−=++ �����                                   (1) 

 
where M, C and K are, respectively, mass, damping and stiffness matrices corresponding to the sway 
degrees of freedom of the frame; u is a single time history of the control force applied through AMD; H is a 
vector of size n whose all elements are zero except the nth element which is unity; Y is a vector of sway 
displacements of the frame and gx�� is the ground acceleration. 

The controlled equation of motion is solved using SIMULINK toolbox of MATLAB. For using the 
SIMULINK, the mass, stiffness and damping matrices need to be defined explicitly. For this purpose, 
damping matrix is obtained by assuming it to be mass and stiffness proportional and is determined by 
using the first two undamped modes and frequencies of the MDOF system.  
 
In Eq. 1, gx��  is the record of ground acceleration for earthquake. In case of instantaneous control, 

depending upon the measured responses at any time t, the control force, u(t), acts on the system. The 
inputs to the ANN are the measured responses, i.e. displacement, velocity and acceleration at time t, and 
the measured ground acceleration at the same time. When the control scheme is not an instantaneous 
one but incorporates time delay in it, then u(t) is the predicted control force at time t from the neural-net 
with input to the ANN as structural displacement, velocity, acceleration and ground acceleration recorded 
at a previous time station (may be at  t – ∆t or t – 2 ∆t, depending upon the time delay considered in the 
study). The training data is obtained from possible future earthquakes at the site of interest. 
 
Possible future earthquakes at the site is generated by assuming the future earthquakes to be a stationary 
random process, having a power spectral density function (PSDF), 

gXS �� , of the form 
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Eq. 2 is after Clough and Penzein (1993) which they used to represent the double filtered ground motion, 
in which S0 is the PSDF of the white noise; ss ωω=ρ / , and gg ωω=ρ / , and sgg ωζω ,,  and sζ are the filter 

coefficients for the second and the first filters, respectively. The parameters sgg ωζω ,,  and sζ  duly take 

care of the site soil condition. The future earthquakes are synthetically generated from the PSDF given by 
Eq. 2 using Monte Carlo simulation. Depending upon the site condition, different forms of PSDF may be 
considered. Even non-stationary model of future earthquakes may be incorporated by using a modulation 
function. 
 
If the desired control force and the future earthquake excitations have the similar frequency contents, it is 
likely that the control of the system will be most effective. Therefore, for effective control of the system to 
future earthquakes, the desired control force may be assumed also to be stationary random process with 
a PSDF (Su) having the same form as given by Eq. 2. Thus, time histories of control forces can be 
synthetically generated from the PSDF of the control force. Note that both 

gXS ��  and Su can be expressed 

by the same expression (Eq. 2), by simply changing the parameter S0 , i.e. for ground acceleration S0 may 
be denoted by S0g, and for control force it may be denoted by Sou. For a given PGA, S0g can be 
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determined using the standard procedure explained in Appendix - I. For given PGA, Sou for the control 
force can be obtained for different assumed values of peak control force (taken as a fraction of the weight 
of the mass of MDOF system). The procedure is similar to that given in Appendix - I. 
 
In simulating the time history of control forces, and the time histories of ground accelerations from their 
respective PSDFs, the time lag between the two is assumed to be zero. For each set of simulated time 
histories of control force and ground acceleration, the equation of motion of the controlled response given 
by Eq. 1, is solved and the time histories of displacement, velocity, acceleration responses are generated. 
Several sets of such responses are generated for different sets of excitations and the corresponding 
control forces. With these sets of time histories, the training data for the neural-net is obtained. When time 
lag is incorporated between the response measurement and application of control force, the training data 
is generated by assuming that the time delay between the response measurement and the actual 
application of the control force on the structure is 2 ∆t. This means that at time t, u(t), the output from 
ANN, acts on the structure instantaneously with the values of )2( ttx ∆− , )2( ttx ∆−� , )2( ttx ∆−�� and 

)2( ttxg ∆−��  applied at the input nodes of the neural net. All time delays including computational time of the 

neural net, conversion time from digital to analog signal and implementation time of actual control force 
are incorporated in the time interval 2 ∆t. Clearly, the data set is prepared such that the control force at the 
third time step from the generated time history of instantaneous control force corresponds with the values 
of controlled displacement, velocity, acceleration of the structure and ground acceleration at the first time 
step. Note that while finding out the controlled responses, control force at the first two time stations are set 
to be zero and the control force at third time station is same as that of the instantaneous control. 
 
Training of Neural Net 
 
With the input and output nodes as described above, the ANN is trained with the generated data set, using 
a single hidden layer. A fully connected feedforward neural net architecture with five input nodes and one 
output node with three hidden nodes in a single hidden layer is used for training. “Act_TanH’ activation 
function, ‘BackpropMomentum’ learning function and ‘Topologic_order’ update function along with 
“Randomize_weights’ initialising function are used for the training. SNNS package is utilized for training 
the neural net.  
 
Testing of Neural Net 
 
The neural nets are tested for (i) one of the data sets for which it was trained, and  (ii) for ElCentro 
earthquake (unknown problem). For testing the neural net, the computed response of the system for the 
input ground motion and the control force applied to the system are taken as the measured responses 
which are fed to the neural net. The time history of control force used for the computation of response is 
obtained by normalizing the time history record of the ground acceleration with respect to its peak value 
and then multiplying it by assumed peak value of the control force so that excitation and control force have 
the same frequency contents. The percentage reduction in peak controlled displacement obtained with the 
applied control force is taken as the target reduction and is used along with controlled responses as inputs 
to the ANN. With inputs as the measured responses (computed controlled responses), target reduction 
and the ground acceleration, the time history of control force as obtained from the output node of the ANN 
is compared with the applied time history of the control force. 
 
The difference between the time histories of the two control forces is taken as one measure of the 
efficiency of the control scheme. The other measure of the efficiency of the control scheme includes 
differences between the target percentage reduction and the percentage reduction for the peak controlled 
displacement obtained using the time history of control force obtained from ANN. Also, the two sets of 
time histories of controlled responses, one obtained by using control force from ANN and the other used 
as input to ANN, are compared for studying the efficiency of the control scheme. 
 
A fully connected feedforward neural net architecture with eleven input nodes (nine nodes from feedback 
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responses from three point, one node for ground acceleration and the other node for the target reduction) 
and one output node with six hidden nodes in a single hidden layer is used for training. For training and 
testing, the target percentage reduction of displacement is considered only for the top floor displacement. 
The efficiency of the control scheme is studied by considering also the controlled responses of the floors 
from which no feedback was fed to the ANN. 
 

Numerical Study
 
The time histories of ground accelerations (excitations) are generated from the power spectral density 
functions (PSDFs) as mentioned above. In all, 7 sets of time histories of excitation sampled at an interval 
of 0.01s with 2001 number of sampled points in each set are used for training the neural net. The set of 
time histories of excitation is generated such that it covers a wide range of PGA, i.e. from 0.05g to 0.35 g 
and covers frequency contents whose PSDF corresponds to neither narrow nor wide band condition 
( π=ω 5g , π=ω 5.0s , 6.0=ζ g , 6.0=ζ s ). The time histories of the control force are generated from the 

PSDF of similar shape having peak control force ranging from 0.5% to 10% weight of the 10-storey frame. 
With these data, 35 sets of time histories of controlled responses are generated using SIMULINK and are 
used for training the neural net. Table 1 shows the different combinations of PGA of excitation and peak 
control force used for generating the data sets. The control scheme using the trained neural-net is tested 
for one set of known data (i.e. the data used for training) and one unknown set of data obtained for 
ElCentro earthquake. 
 
Testing of 10-Storey Frame  
 
The testing of the ANN is done with one known excitation (which is used for training of the neural net) and 
the ElCentro earthquake. For testing the ANN, the ANN controlled responses of the different storeys are 
compared with the target ones. Fig. 2 compares between the time histories of control force as obtained 
from the ANN and that (ideal one) which is used to obtain the target responses. It is seen from the figure 
that the two time histories of control force are practically the same for the case of known excitation. 
Therefore, it is expected that the target responses and the ANN controlled responses will be nearly the 
same. Figs. 3 - 5 compare between the uncontrolled, target and ANN controlled responses for the 10th 
storey. It is seen from the figures that difference between the target and the ANN controlled responses is 
almost indistinguishable. The difference between the ANN controlled peak displacement and the target 
peak displacement is about 12%. Table 2 compares between the percentage reductions in peak target 
responses and those for the ANN controlled responses. It is seen from the table that the percentage 
reductions in peak responses for the two do not significantly differ; ANN provides less reduction in 
responses.   
 
Fig. 6 compares between the time histories of control force obtained from the ANN and that is used for 
obtaining the target responses for ElCentro excitation. The two time histories match quite well. Therefore, 
it is expected that the difference between the target and ANN controlled response will be small. Figs. 7 -9 
compare between the uncontrolled, target and ANN controlled responses for the 10th storey. It is seen 
from the figures that difference between the target and the ANN controlled responses is almost 
indistinguishable in the figures. The difference between the ANN controlled peak displacement and the 
target peak displacement is about 11%. Table 3 compares between the percentage reductions in peak 
target responses and those for the ANN controlled responses. It is seen from the table that the percentage 
reductions in peak responses for the two do not significantly differ; ANN provides less reduction in 
responses.  In fact, comparison of controlled responses of all floors shows that the maximum percentage 
reductions in peak response for different response quantities occur at different floors. However, it is 
generally observed that percentage reductions in peak responses for all response quantities become less 
towards the bottom floors. For the present example, it is seen that the percentage reductions in peak 
responses are very high (nearly maximum) between 7th to 9th floor. Further it is important to note that the 
peak control force required to obtain a significant percentage reduction in response in not very large. For a 
peak control force of 4% of building weight the reduction in peak displacement, velocity and acceleration 
of the top floor are 48.8%, 33.4% and 38.6% respectively.  
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Fig. 10 compares between the time histories of control force as obtained from ANN with a time delay of 
0.02 s (2∆t) and the ideal one (without time delay). It is seen from the figure that the two time histories 
differ and the difference is more prominent near the peaks. The difference between the peak values of the 
control forces is about 17%.  Figs. 11 - 13 compare between the target and ANN controlled responses of 
10th storey. Note that the target responses are obtained with the time history of ideal control force (i.e. 
without time delay). It is seen from the figures that the two time histories of responses for different floors 
and different response quantities differ by different degrees. However, the difference between the two is 
not very large. Table 4 compares between the percentage reductions for peak target responses (without 
time delay) and those for the ANN controlled responses (with time delay). It is seen from the table that the 
time delay deteriorates the efficiency of the control scheme. The maximum effect of the time delay is 
observed for the velocity response; there is about 15% less reduction in peak velocity of 7th floor due to 
the effect of time delay. Further, it is observed from the table that the percentage reductions in responses 
are not uniform for all the four floors. For some of the response quantities, it is observed that the 
percentage reduction in peak response is maximum for the 7th floor. In fact, comparison of controlled 
responses of all floors shows that the maximum percentage reductions in peak response for different 
response quantities occur at different floors. However, it is generally observed that percentage reductions 
in peak responses for all response quantities become less towards the bottom floors. For the present 
example, it is seen that the percentage reductions in peak responses are very high (nearly maximum) 
between 7th to 9th floor, like the case of no time delay. 
 

Conclusions 
 

An active control scheme using ANN is presented for the seismic control of building frame for future 
earthquakes. The control scheme has the advantage that it can consider (i) limited number of feedback 
measurements, (ii) time delay effect, and (iii) a target reduction in response. The ANN control scheme 
requires feedback responses (displacement, velocity and acceleration), ground excitation and a target 
percentage reduction as inputs to the ANN. The output of the ANN is the time history of control force. A 
10-storey building frame is taken as the illustrative example. Feedback responses are taken from 1st, 5th 
and 10th storeys of the building frame. The control is affected by a single control force applied at the top of 
the building frame with AMD. Following conclusions are drawn from the numerical study. 
1. The ANN control scheme is found to be quite effective in controlling the response of a ten-storey 
building frame taken as an illustrative example. The difference between the peak control force predicted 
by the ANN and the ideal control force for the ElCentro earthquake is of the order of 10%; the maximum 
difference between the target response and the ANN controlled response is of the order of 11% for 
instantaneous control. 
2. The peak control force required to obtain a significant percentage reduction in response in not very 
large. For a peak control force of 4% of building weight the reduction in peak displacement, velocity and 
acceleration of the top floor are 48.8%, 33.4% and 38.6% respectively.  
3. When the time delay is taken into consideration, the performance of the control scheme deteriorates. 
For a time delay of 0.02s (2∆t), the percentage reduction in the top floor responses (peak displacement, 
velocity and acceleration) decreases by about 10%, 13% and 11%. The peak control force also decreases 
by 17% from its ideal value. 
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Table 1.      Combinations of PGA of excitation and peak control force used for 
obtaining training data for neural net.  

PGA of  
Excitation 

Peak Control Force 
(as percentage of weight of the frame) 

0.05 g 0.5%,  1%,  1.5%,  2%,  2.5%, 3% 
0.10 g 1.5%,  2.5%,  3.5%,  4.5%,  5.5% 
0.15 g 1%,  2%,  4%,  6%,  8% 
0.20 g 3%,  5%,  7%,   9% 
0.25 g 2%,  4%,  6%,  8%,  10% 
0.30 g 2%,  4%,  6%,  8%,  10% 
0.35 g 2%,  4%,  6%,  8%,  10% 

Table 2.   Comparison of target percentage reduction in responses and that obtained from ANN for 
   10-storey frame (peak control force = 0.02 W and known excitation). 

 
Percentage Reduction in Responses 

(Target) 
Percentage Reduction in Responses 

(ANN) Floor 
Disp Vel Accl Disp Vel Accl 

10 63.3 36.2 40.5 59.5 31.1 35.4 
9 64.1 42.1 43.2 61.2 37.2 39.6 
8 65.9 50.8 48.5 60.8 44.8 45.6 
7 63.9 60.6 51.0 57.8 55.7 46.0 
6 58.2 49.6 42.1 53.5 45.3 38.3 
5 52.6 37.2 31..0 48.2 33.6 27.0 
4 47.8 25.3 20.3 43.5 22.0 17.2 
3 43.1 14.8 10.6 41.2 11.3 6.7 
2 39.2 6.8 5.9 36.7 4.9 3.3 
1 36.1 –0.14 0.04 33.0 –2.4 –2.3 

Table 3.  Comparison of target percentage reduction in responses and that obtained from ANN for 
  10-storey frame (peak control force = 0.04 W; ElCentro earthquake). 

 
Percentage Reduction in Responses 

(Target) 
Percentage Reduction in Responses 

(ANN) Floor 
Disp Vel Accl Disp Vel Accl 

10 53.2 38.7 45.0 48.8 33.4 38.6 
9 55.6 44.4 46.9 50.7 39.9 42.3 
8 58.3 51.0 49.2 54.1 46.8 44.6 
7 56.7 58.5 52.0 50.5 53.2 46.4 
6 55.0 55.6 48.5 49.9 51.6 44.3 
5 53.5 41.1 43.8 48.3 37.0 38.2 
4 52.4 29.6 35.9 47.8 26.2 31.3 
3 49.3 18.3 24.8 45.1 15.2 21.3 
2 44.2 9.6 14.5 41.2 6.5 13.6 
1 41.0 –1.1 3.6 36.2 –3.2 1.1 
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Figure 1.   Schematic diagram of control scheme for MDOF system.
 
 

  
Figure 2. Time histories of ideal and ANN control 

force (peak control force = 0.02 W; known 
excitation). 

Figure 3. Time histories of 10th floor uncontrolled, tar-
     get and ANN controlled displacements (peak
     control force=0.02 W; known excitation) 

Table 4.      Comparison of target percentage reduction in responses and that obtained from ANN for 10-
storey frame (peak control force = 0.04W; ElCentro earthquake; time delay = 0.02 s). 

Percentage Reduction in Responses 
(Target) 

Percentage Reduction in Responses 
(ANN) Floor 

Disp Vel Accl Disp Vel Accl 
10 53.2 38.7 45.0 42.9 25.8 34.6 
9 55.6 44.4 46.9 44.2 32.6 36.2 
8 58.3 51.0 49.2 46.5 38.6 38.4 
7 56.7 58.5 52.0 42.8 43.7 38.2 
6 55.0 55.6 48.5 42.5 42.9 36.6 
5 53.5 41.1 43.8 42.3 30.3 31.5 
4 52.4 29.6 35.9 40.9 18.9 26.6 
3 49.3 18.3 24.8 38.3 8.2 15.5 
2 44.2 9.6 14.5 35.3 0.5 6.3 
1 41.0 –1.1 3.6 30.5 –7.9 -5.9 
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Figure 4. Time histories of 10th floor uncontrolled 

  target and ANN controlled velocity (peak 
  control force = 0.04 W; known excitation). 

Figure 5. Time histories of 10th floor uncontrolled 
 target and ANN controlled acceleration (peak 
 control force = 0.02 W; known excitation). 

 

  
Figure 6. Time histories of ideal and ANN control 

force (peak control force = 0.04 W; 
ElCentro). 

Figure 7. Time histories of 10th floor uncontrolled 
target and ANN controlled displacement 
(peak control force = 0.04 W; ElCentro). 

 

  
Figure 8. Time histories of 10th floor uncontrolled 

target and ANN controlled velocity (peak 
control force = 0.04 W; ElCentro). 

Figure 9. Time histories of 10th floor uncontrolled 
target and ANN controlled acceleration    
(peak control force = 0.04 W; ElCentro). 
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Figure 10. Time histories of ideal and ANN control 

force (time delay = 0.02 s, peak CF= 
0.04 W; ElCentro). 

Figure 11. Time histories of 10th floor target and 
  ANN controlled displacement  (time delay 
  = 0.02 s, peak CF= 0.04 W; ElCentro). 

 

  
Figure 12.  Time histories of 10th floor target and 

ANN controlled velocity  (Time delay = 
0.02 s, peak CF= 0.04 W; ElCentro). 

Figure 13. Time histories of 10th floor target and 
 ANN controlled acceleration  (Time delay 
 = 0.02 s, peak CF= 0.04 W; ElCentro). 

 

 

 

APPENDIX - I 

 

For the known shape of PSDF of ground excitation 
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here 2
sgσ is the variance which is equal to the area under the PSDF curve of ground excitation. For an 

assumed value of peak ground acceleration (PGA) 
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p
PGA

sg =σ                            (I.2) 

where p is the peak factor given in terms of the first three spectral moments ( 210 ,, λλλ ) and the duration 

τ of earthquake (Kiureghian, 1981). 

)ln2

5772.0
)(ln2p

e

e
��

�� +=             (I.3) 

where e�  is an equivalent rate of statically independent zero crossings expressed as 

υ−δ=υ )38.063.1( 45.0
e   for 69.0<δ  

      υ=     for 69.0≥δ                        (I.4) 

in which υ is the mean zero crossing rate of the process given by 

  02 /)/1( λλπ=υ                         (I.5) 

and δ is the shape-factor for the excitation PSDF (with a value between 0 and 1) given by 

20

2
11
λλ

λ−=δ                     (I.6) 

in which 210 and, λλλ  are respectively the zeroth, first and second moments of the PSDF about the 

frequency origin. 
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