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ABSTRACT 

 
Nonlinear dynamic analysis has become a requirement for the seismic design of high-rise concrete shear 
wall buildings on the US west coast. Current models for nonlinear flexural analysis are simple, rational and 
can accurately predict the response of concrete walls. In comparison, models for seismic shear are very 
primitive - a linear response until brittle failure is often assumed. Concrete design codes such as CSA-
A23.3 and ACI-318 do not include any guidance on the parameters needed to model concrete walls in a 
non-linear analysis: cracked-section stiffness, shear strain at yielding and ultimate shear strain. 
  
The authors have previously developed a simple, rational model for membrane elements subjected to 
seismic shear. The model separates deformations due to cracks from deformations due to concrete 
between cracks. Simple monotonic stress-strain relationships for concrete are combined with a crack-
closing function to accurately predict the complex seismic shear response observed in experiments. The 
membrane element model has been extended to include the influence of bending strains typical of shear 
walls. The proposed shear model is compatible with the shear strength provisions of the 2004 Canadian 
concrete code CSA-A23.3-04.  
 
The shear strength of a concrete wall is combined with the cracked-section shear stiffness and ultimate 
shear strain to define the envelope of shear response. Simple hysteretic rules provide the complete cyclic 
response. The resulting shear wall model defines the response of a “shear spring” element that can be 
used independently of (in parallel with) the flexural model, or can be combined with a nonlinear flexural 
model to capture the complex interaction between shear and flexure. The nonlinear shear and flexure 
models are combined by using the average vertical strain in the wall determined from the flexural model in 
determining the shear envelope.  
 

Introduction 
 

Nonlinear dynamic analysis has become a requirement for the seismic design of high-rise concrete shear 
wall buildings on the US west coast.  While such analyses are very sophisticated, the accuracy of the 
results is limited by the accuracy of the models used to simulate concrete walls. While fibre models for 
nonlinear flexural analysis are simple, rational and can accurately predict the response of concrete walls, 
models for seismic shear are very primitive - a linear response until brittle failure is often assumed.  
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Concrete design codes such as CSA-A23.3 and ACI-318 provide the necessary equations to calculate the 
shear strength of concrete walls, including the influence of axial loads and flexure. They do not include any 
guidance on the parameters needed to model concrete walls in a non-linear analysis: cracked-section 
stiffness, shear strain at yielding and ultimate shear strain. Seismic guidelines such as FEMA 356 define a 
non-linear shear model, but take the simplified approach of using the gross concrete shear stiffness (un-
cracked section) until the shear strength is reached. 
 
The nonlinear shear response of reinforced concrete is complicated by the influence of bending strains.  
The simplest shear problem is a membrane element, which is subjected to uniform normal strains (no 
bending) and has uniformly spaced reinforcement in two orthogonal directions. The authors have 
developed a simple, rational model for membrane elements subjected to seismic shear (Gérin and 
Adebar, 2004, n.d.).  The model separates deformations due to cracks from deformations due to concrete 
between cracks.  Simple monotonic stress-strain relationships for concrete are combined with a crack-
closing function to accurately predict the complex seismic shear response observed in experiments.  
 
This paper presents a non-linear model for the shear response of concrete shear walls that is an 
extension of the rational model for membrane elements.  The model defines the response of a “shear 
spring” element that can be combined with a single or multi-element flexural model (Fig. 1). The proposed 
shear model is compatible with the shear strength provisions of the 2004 Canadian concrete code CSA-
A23.3-04. The shear strength of a concrete wall, combined with the cracked-section shear stiffness and 
ultimate shear strain, define the envelope of shear response. Simple hysteretic rules provide the complete 
cyclic response. 
 

General Model for Seismic Shear 
 

To develop a rational model for reinforced concrete subjected to seismic shear, Gérin and Adebar (2004, 
n.d.) first studied test results from membrane elements subjected to reverse-cyclic shear. Membrane 
elements represent the simplest shear problem: a panel (or wall element) subjected to uniform normal 
strains (no bending) with uniformly spaced reinforcement in two orthogonal directions. Close examination 
of the relationships between stress and strain components led to identification of key mechanisms of the 
cyclic shear response: 
 

� Shear strain of the element is controlled primarily by strain of the weaker reinforcement (first 
reinforcement to yield), e.g., yielding of the reinforcement causes yielding in shear 

� Pinching of the hysteresis loops in the typical shear response is primarily governed by plastic 
strain accumulated in weaker reinforcement. 

� The principal strain angle lags the principal stress angle through the reversal stage. This lag is a 
function of plastic strain in the reinforcement. 

� Strains due to applied shear are primarily due to deformations at the cracks; concrete between 
the cracks contributes very little to the total strains. 

� The monotonic response forms an envelope to the cyclic response. 
 
These key mechanisms were implemented in a general model where deformations at the cracks are 
separated from deformations of concrete between cracks (Gérin and Adebar, 2004, n.d.). While the 
concrete and reinforcement strains are directly related to applied loads, crack deformations are a 
consequence of maintaining strain compatibility between concrete and reinforcement. Separating 
deformations at cracks from deformations in concrete between cracks enables shear strain to be explicitly 
linked to reinforcement strains. This approach is a significant departure from existing models where 
cracked concrete is treated as a single homogeneous material.  
 
Figure 2 shows the typical response of a membrane element subjected to reverse-cyclic shear as well as 
a prediction from the general model. The general model uses simple material stress-strain relationships, 
which when coupled with deformations at the cracks, capture the complex behaviour including pinching of 
hysteresis loops. These material models are compatible with typical flexure models. The general model is 
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suitable for a step-wise implementation where stresses and strains are updated at each increment of 
applied loads (in-plane shear and normal axial loads) to predict the full cyclic load-deformation response. 
  
The general model explicitly considers the influence of crack angle, concrete tension, and axial load in two 
directions. This allows the importance of each parameter to be evaluated and simplifications can be made 
on a rational basis. For example, for seismic design of typical walls – with reinforcement ratios within 
modern code limits – concrete tension can be ignored, and the crack angle can be assumed equal to the 
principal concrete stress angle. A simpler model, more easily implemented in a non-linear analysis, was 
developed, where shear strain can be defined directly from shear stress, avoiding the need for an iterative 
solution (Gérin, 2003). 

 
Model for Seismic Shear with Non-Yielding Flexure 

 
In many regions of a high-rise concrete wall, bending moments are relatively small and have little influence 
on shear response. This is true, for example, above the plastic hinge region where flexure is not sufficient 
to yield the vertical reinforcement. In these cases, the shear response can be modelled independently 
from flexural response; however the influence of axial loads must be accounted for.  The membrane 
element model is the ideal model for shear response in this case. 
 
The basic shear model is shown in Fig. 3. It consists of a tri-linear envelope and two simple rules to define 
unloading and reloading. The model is defined by shear stress at cracking, shear stress at yielding, shear 
strain at yielding and ultimate shear strain. Only vertical axial load is included, and concrete tension is 
ignored. The wall is assumed to have at least minimum reinforcement uniformly distributed in both 
directions. 
 
Shear Stress at Cracking 

 
The shear stress at cracking may be estimated using empirical equations from concrete design codes for 
the concrete contribution Vc. Alternatively, the following simple equation for the shear stress at cracking, 

neglecting flexure and assuming a 45 deg. principal stress angle, can be used:  
 

 

cr

v

crcr
f

n
fv += 1  (1) 

 
where nv is the vertical axial stress – the axial force over the gross concrete area – and fcr is the principal 

tensile stress at cracking, which can be estimated from the specified concrete compression strength, f’c, 

as follows: 
 

ccr ff ′= 33.0  (2) 

 
Before cracking, the concrete section shear stiffness can be taken as 0.4 times the concrete modulus of 
elasticity, G = 0.4Ec. 

 
Shear Stress at Yield 

 
The shear at yielding is assumed equal to the shear strength of the wall. The shear strength equations 
from the 2004 Canadian concrete code CSA A23.3-04 are used here, although other strength equations 
may be used. For consistency with other aspects of the model, the equations are expressed in terms of 
shear stress instead of shear force. 
 
The shear stress at yield can be assumed as the sum of a concrete contribution, vc, and a reinforcement 

contribution, vs, i.e.: 
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scy vvv +=  (3) 

and 

cc fv ′= β  (4) 

 

θρ cotyhs fv =  (5) 

 
where β is defined in the Canadian concrete code, ρh is the horizontal reinforcement ratio, fy is the 

reinforcement yield strength (typically 400 MPa), and θ defines the orientation of the principal compression 
stress with respect to the vertical. In the Canadian concrete code CSA-A23.2-04, β and θ are defined as a 
function of the average axial strain of a member.  For a concrete wall, this would be the vertical strain at 
the mid-point of the wall. As a simplification, the Canadian concrete code allows values of β = 0.18 and θ 
= 35 deg to be used for any axial strain values.  Therefore, these values can be used in a simplified shear 
model for a concrete wall. 
  
Under monotonic loading, additional strength may be gained after the horizontal reinforcement yields and 
the vertical reinforcement resists a larger portion of the applied shear. Under reverse-cyclic loading, very 
little of that strength gain may be realized, therefore, the response after yielding is assumed to be perfectly 
plastic. 
 
To ensure the reinforcement yields before a concrete compression failure occurs, the shear stress at 
yielding should be limited to: 
 

 cy fv ′≤ 25.0  (6) 

 
Shear Strain at Yield 

 
The shear strain at yield is used to define the cracked-section shear stiffness and the ultimate shear 
strain. The following simple equation can be used to estimate shear strain at yield: 
 

 

c

y

sv

vy

s

y

y
E

v

E

nv

E

f 4
+

−
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ρ
γ  (7) 

 

with the condition that: 

s

y

sv

vy

E

f

E

nv
≤

−
≤

ρ
0  

 
Equation 7 is based on the assumption that the horizontal reinforcement yields first, which is the case 
when the flexural strains are relatively small. Equation 7 is also based on the conservative assumption of 
a principal stress angle of 45 deg, which gives a minimum value for shear strain at yield. 
 
Cracked-section Shear Stiffness 

 
With the shear stress at yielding (shear strength) and shear strain at yielding defined, the cracked-section 
shear stiffness is simply the ratio of these: 
 

 

y

y

cr

v
G

γ
=  (8) 
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It is interesting to note that while the uncracked section shear stiffness is entirely a function of the concrete 
(Ec), the cracked-section shear stiffness is governed primarily by the quantity of reinforcement. 

 
Ultimate Shear Strain 

 
The ultimate shear strain is defined as the maximum shear strain without significant loss of shear 
strength. It is defined as a function of the shear strain at yield and the demand on the concrete, which is 
expressed as the ratio of shear strength to concrete compression strength. A concrete shear failure – 
failure due to excessive shear deformations at the cracks – is assumed to occur once the shear strain 
exceeds the limit: 
 

 

c

y

y

u

f

v

′
−= 124

γ

γ
 (9) 

 
Equation 9 is compared with experimental data in Fig. 3. 
 
Hysteretic Rules 

 
The simple hysteretic model shown in Fig. 2 assumes that yielding occurs at vy during each cycle and  

unloading occurs at a constant slope equal to Gcr. The plastic shear strain, γp, remaining at the end of 

each unloading segment is assumed to be cumulative from one direction of loading to the other. The 
reloading curve accounts for the closing of diagonal cracks in one direction and the simultaneous opening 
of diagonal cracks in the other direction in a simple way.  
 
The shear strain at any applied shear stress level is given by: 
 

 pe kγγγ +=  (10) 

 
where γe is the elastic shear strain, γp is the accumulated plastic shear strain and the coefficient k controls 

the reversal of plastic strain from one direction to the other. These parameters are defined as: 
 

 

cr

e
G

v
=γ  (11) 
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cr

p
G

vmax

max −= γγ  (13) 

 
where v is the applied shear stress at a given time-step. In Eq. 13, γmax and vmax are the maximum shear 

strain and shear stress reached at that point. Unlike the other two parameters, the plastic shear strain γp is 

only updated when unloading from a cycle where yielding has occurred, i.e., the parameter is not updated 
continuously. 
 

Model for Seismic Shear with Significant Flexural Yielding 

 
If the strains due to bending are significant, they need to be accounted for in the shear model. This is 
certainly the case in the flexural hinge region of a concrete wall as shown in Fig. 6.  The following is a 
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summary of the changes to the model above in order to account for bending deformations. Those aspects 
of the model that are unchanged are not repeated. 
 
In the plastic hinge region of a wall, the rotational demand on the wall is the best indicator of average 
deformations. The rotational demand can be determined directly from the nonlinear flexural model for the 
wall. Approximate procedures for estimating inelastic rotation from global drift are given elsewhere 
(Adebar 2006). 
 
Shear stress at yield 

 
Due to “fan action” in the lower portion of the wall shown in Fig. 6, there is a concentration of shear stress 
in the compression zone at the bottom right corner of the wall. There are no requirements in non-seismic 
provisions to account for this concentration of shear stress because the increased diagonal compression 
stresses are compensated for by increased diagonal compression strength of concrete due to reduced 
tension strains in this highly compressed region. 
 
When there is reverse cyclic loading, the concrete compression zone will be damaged from previous 
cycles during which the compression zone is the tension zone. The limit on the shear stress given by Eq. 6 
to ensure the horizontal reinforcement yields before a concrete diagonal compression failure must be 
reduced depending on the rotational demands on the wall. The factor 0.25 in Eq. 6 should be reduced to 
0.10 unless the inelastic rotation demand is less than 0.015. When the inelastic rotation demand is less 
than 0.005, the 0.25 factor need only be reduced to 0.15. For inelastic rotations between 0.005 and 0.015, 
linear interpolation should be used. 
 
A conservative model to determine the quantity of horizontal reinforcement needed to avoid diagonal 
tension failure results from assuming β = 0 in Eq. 4 and θ = 45 deg in Eq. 5 for the critical diagonal failure 
plane shown in Fig. 6. As this approach is conservative for walls with significant damage, it is 
correspondingly too conservative for walls with low levels of damage. It is common practice to use non-
seismic shear design provisions for members with low levels of seismic damage.  Thus β can be taken as 
0.18 when the inelastic rotational demand on the plastic hinge region of a concrete wall is less than 0.005. 
The value of β should be taken as zero (Vc = 0) when the inelastic rotational demand on the wall is equal 

to or greater than 0.015. When the inelastic rotational demand is between 0.005 and 0.015, the value of β 
in Eq. 4 should be determined by linear interpolation between the values of 0.18 and 0. 
 
For a non-seismic shear model, axial tension strain is a good indicator of critical diagonal crack inclination 
in the uniform stress regions of members prior to yielding of longitudinal reinforcement.  Unfortunately, this 
approach is not suitable for disturbed stress regions such as the base of a concrete wall, particularly after 
the vertical reinforcement yields. The level of axial compression force in the wall divided by fc’Ag was found 

(Adebar, 2006) to be a good indicator of the critical crack angle at the boundary of the fan. The 
compression stress angle θ in Eq. 5 is assumed to be 45° unless the axial compression force acting on 
the wall is greater than 0.1fc’Ag. When the axial compression is greater than or equal to 0.2fc’Ag, the value 

of θ can be taken as 35°. For axial compression between these two limits, linear interpolation should be 
used. 
 
Cracked-section shear stiffness 

 
The influence of bending strain on the cracked section shear stiffness can be included as: 
 

 

yhvcr

yhcr

cr
fG

fG
G

ρε

ρ

+
=*

 (14) 

 
where εv represents the average vertical strain at the mid-point of the wall over the plastic hinge height.  It 

can be determined from the flexural model or estimated from: 
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where AsT is the flexural tension (vertical) reinforcement concentrated in the zone on the flexural tension 

end of the wall. Note that Eq. 14 does not include a shear force term because the influence of shear force 
is already accounted for in the shear stiffness equation (Eq. 14). 
 
Shear strains 

 
The state of strain within the plastic hinge region shown in Fig. 6 is very complex, and can really only be 
modelled using a complex finite element model.  However, a reasonable estimate of the strains can be 
made in a very simple way.  The plastic hinge region can be divided into two parts: the fan region 
(triangular portion shown shaded in Fig. 6), and the uniform stress field region (non-shaded portion).  The 
fan region has large vertical tension strains from the flexural tension, and significant diagonal compression 
strains along the compression struts which are inclined at varying angles.  A reasonable estimate of shear 
strains can be made by assuming the shear strain in the uniform stress portion is the average strain 
across the entire plastic hinge region.  Thus the membrane shear model described above can be used as 
the shear element in the plastic hinge region if the shear stress at yield and cracked-section shear 
stiffness are adjusted as described above.  Eqs. 7 and 9 can be used to estimate the shear strain at yield 
and the ultimate shear strain capacity, respectively.  
 

Conclusions 

 
This paper describes a simple non-linear shear model for concrete walls. The shear strength of a concrete 
wall, combined with the shear strain at yielding of the horizontal reinforcement, defines the cracked-
section shear stiffness of the wall. The ultimate shear strain capacity of the wall depends on the shear 
stress ratio. With the envelope of shear response accurately defined, simple hysteretic rules provide the 
complete cyclic response. 
 
The shear model presented here defines the response of a “shear spring” element that can be used 
independently of (in parallel with) the flexural spring, or can be combined with a nonlinear flexural model to 
provide a model that captures the complex interaction between shear and flexure. The nonlinear shear 
and flexure models are combined by using the average vertical strain in the wall determined from the 
flexural model in determining the shear envelope.  
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Figure 1.  Simple model for concrete shear wall. 
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Figure 2.  Example membrane shear response: (a) experimental results, (b) general model prediction. 

1348



-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

shear strain, γ (mε)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

 s
h

ea
r 

st
re

ss
, 

v
 (

M
P

a)

Gcr

-γp

γp

vy

-vy

γ = γe + kγp

γe

γy γu

vcr

 
 

Figure 3.  Proposed shear model for non-yielding flexure. 
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Figure 4.  Influence of shear stress ratio on ultimate shear strain. 
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Figure 5.  Example shear model with flexure. 
 
 

 
Figure 6.  Strut-and-tie model showing internal force flow due to stirrup contribution of shear 

resistance in the plastic hinge region of a concrete wall. 
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