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ABSTRACT 

 

Nonlinear dynamic analysis was used to study the influence of ground motions on the effective stiffness of 
a high-rise cantilever wall.  To simplify the analyses, a simplified force–displacement model for high-rise 
cantilever walls was first developed from the results of a fibre model, a simplified trilinear bending moment 
– curvature model, and the results from a large-scale test of a cantilever wall.  The model consists of a 
rational predefined envelope, and empirical hysteretic rules.  If the effective stiffness of the particular wall 
that was studied is determined from the elastic stiffness of an equivalent bi-linear load-displacement 
relationship with equal area-under-the-curve, the stiffness reduction factor α = ke /kg should be taken as 

80%.  While the influence of the particular ground motion is very significant, the average results from the 
nonlinear dynamic analysis suggests that the stiffness reduction factor reduces gradually from about 85% 
or 90% at R = 1.5 to a reduction factor of about 60% at an R = 5.0. 
 

Introduction 

 
According to the National Building Code of Canada, linear dynamic analysis of concrete structures must 
be done using a structural model that accounts for the effect of cracked sections.  Similarly, the seismic 
design provisions of the Canadian concrete code requires that the design displacement be determined 
accounting for cracked sections.  The design displacement is needed to check if confinement is required 
in the plastic hinge region of a concrete wall, to determine the shear strength of a ductile concrete wall, to 
determine the rotational demands on coupling beams, and to determine the punching shear capacity of 
slab-column connections in gravity load frames attached to the SFRS. 
 
The flexural rigidity of an uncracked concrete wall is usually assumed to be Ec Ig , where Ec is the Modulus 

of Elasticity of concrete and Ig is the second moment of area of the gross concrete section.  When a 

concrete wall is subjected to significant earthquake actions, the wall cracks and the flexural stiffness 
reduces in the vicinity of the cracks. To account for the reduction in stiffness in linear analysis, an effective 
flexural rigidity Ec Ie = α Ec Ig is used.  A single reduction factor α = Ie /Ig is normally used for an entire 

concrete wall.  This reduction factor is an average value accounting for the variation of cracking as a wall 
is subjected to increasing force, the variation of cracking over the height of the wall, and the variation of 
stiffness at cracked and uncracked sections. FEMA 356 recommends a factor of 80% for previously 
uncracked concrete walls and a factor of 50% for previously cracked walls. The commentary to the 1995 
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New Zealand concrete code, recommends a factor of 25% for a concrete wall with no axial force and a 
factor of 35% for a concrete wall with an axial compression force equal to 10% fc'Ag.  

 
Upper-bound and Lower-bound Effective Stiffness 

 
The most general model for calculating nonlinear flexural response of any reinforced concrete section is a 
fibre (layer) model, in which stress-strain relationships for concrete and reinforcement are used to 
determine the stress in fibres (layers) of the cross-section at a given strain level. The stress-strain 
response of concrete and post-yielding stress-strain response of reinforcement depend on strain history.  
Thus the cyclic flexural response of reinforced concrete depends on the maximum strains reached in 
previous load cycles. Rather than deal with an infinite number of bending moment – curvature 
relationships depending on previous load history, the concept of an upper-bound and lower-bound 
bending moment – curvature response can be used. The upper-bound response corresponds to a 
previously uncracked wall that is loaded monotonically to failure, while the lower-bound response 
corresponds to a wall that is severely cracked during previous load cycles.  
 
Adebar and Ibrahim (2002) used the results from a fibre model to develop a simple nonlinear flexural 
model for typical high-rise concrete shear walls where the nonlinear compression strains of concrete are 
relatively small.  They proposed that both the upper-bound and lower-bound bending moment – curvature 
relationships of a typical concrete shear wall can be reasonably approximated by trilinear curves. The 
trilinear bending moment – curvature model was used to develop a general method for estimating the 
upper-bound and lower-bound effective flexural rigidity of concrete walls accounting for the magnitude of 
axial compression, amount and distribution of vertical reinforcement, concrete geometry, and all 
parameters that affect the flexural capacity of the wall (Ibrahim and Adebar 2004). The effective flexural 
stiffness was determined from the slope of the elastic portion of an equivalent elastic-plastic load-
displacement curve that has the same area under the curve as the actual nonlinear relationship. A wide 
range of different walls were examined, and it was observed that the parameter that most influences the 
effective moment of inertia is the axial compression applied at the base of the wall. Thus simplified 
expressions were proposed by Ibrahim and Adebar (2002) for the upper-bound and lower-bound effective 
moment of inertia of concrete shear walls.  
 
In order to validate the models described above, Adebar et al. (n.d) conducted a large-scale test on a 
slender concrete wall.  A 12.5 m (41 ft) “high” concrete wall with a height-to-length ratio of 7.6 was 
constructed and tested in a horizontal position supported on sliding bearings.  The wall had a flanged 
cross section, low percentage of vertical reinforcement (0.65% in the flanges and 0.25% in the web), and 
was subjected to a uniform axial compression equal to 0.10

 
fc'Ag in addition to a reverse cyclic lateral point 

load applied at 11.33 m (37 ft) from the critical flexural section. The envelopes of the measured load-
displacement relationships were converted to an equivalent bi-linear load-displacement relationship with 
equal area-under-the-curve up to the point that the non-linear curves cross the nominal capacity. This 
procedure suggests an effective elastic stiffness ke = 0.79kg, which corresponds with the upper-bound 

prediction of Ie = 0.79Ig from the general method (Ibrahim and Adebar 2004). Up to a drift of about 1.5%, 

the reduction in stiffness was due to concrete cracking, and the effective stiffness of the wall compares 
well with the predicted lower-bound equal to 39% of the uncracked section stiffness. 
 
In most cases, the actual response of a concrete wall will be somewhere between the upper-bound and 
lower-bound response.  One possible approach would be to use the upper-bound effective stiffness in a 
force-based approach to make a safe estimate of force demand, and the lower-bound effective stiffness in 
a displacement-based approach to make a safe estimate of displacement demand. An alternative 
approach might be to relate effective stiffness to displacement level.  If the displacements are small, the 
level of damage will be small and the effective stiffness will be close to the upper-bound value.  If the 
displacements are large, there will be considerable damage and the effective stiffness will be closer to the 
lower-bound value.  This approach is complicated by the fact that the effective stiffness in any cycle of 
loading depends on the maximum displacement in previous cycles.  Thus the effective stiffness in the 
critical cycle depends on the magnitude of the preceding cycles.  This suggests that the effective stiffness 
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depends on certain characteristics of the ground motion.  In the current study, nonlinear dynamic analysis 
was used to study the influence of ground motions on the effective stiffness of high-rise cantilever walls. 
 

Nonlinear Force-Displacement Model for High-Rise Cantilever Walls 

 
A fibre model, the trilinear bending moment curvature relationship proposed by Adebar and Ibrahim 
(2002), and the results from the large-scale test of a cantilever wall (Adebar et al. 2007), were used to 
develop a simplified force–displacement model for high-rise cantilever walls.  The model consists of a 
rational predefined envelope, and empirical hysteretic rules.  These are briefly described separately below, 
and additional details can be found in Korchinski (2007). 
 
Envelope 

 
The envelope was defined from the results of a fibre model for a number of different high-rise cantilever 
walls. The simplified force-displacement relationship is linear before first cracking and then is nonlinear 
until the full section yields.  As tension stiffening is included in the envelope, the section can be assumed 
to be perfectly plastic when the flexural capacity is reached, or a simple inclined linear segment can be 
used to model strain hardening of the reinforcement.  A fourth order polynomial is used to represent the 
nonlinear segment of the curve.  Five pieces of information are used to define the curve: position of start 
and endpoints, along with slope at both these points, and the position of an additional point on the curve. 
The definition of the curve is described further below. 
 
The shear at cracking Vcr is a function of the cracking moment Mcr, and the distribution of lateral load 
acting on the wall.  The corresponding displacement at first cracking ∆cr can be calculated from first 
principles. The slope at the start of the nonlinear curve is reduced from the initial stiffness k = Vcr/∆cr to 
0.9k.  The shear at the flexural capacity of the wall VN is a function of the flexural capacity MN, and the 
distribution of lateral load acting on the wall.  The displacement at flexural capacity ∆cr is calculated by 
integrating curvatures determined from the bending moment diagram using the trilinear moment-curvature 
relationship for the wall.  This process to determine displacement is repeated at 0.95(VN-Vcr) in order to 
determine the secant slope at the end of the nonlinear portion of the curve, and is repeated at 0.9(VN-Vcr) 
in order to determine the additional point that the curve is fit to.  The five points required to describe the 
simplified force-displacement relationship are shown in Figure 1.   
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Figure 1.  Simplified force-displacement relationship for a cantilever shear wall. 

 
Hysteretic Model 

The hysteretic rules that are combined with the envelope described above were developed empirically 
from the large-scale cantilever wall test conducted by Adebar et al. (2007). The wall is assumed to load 

1312



and unload along the initial linear curve with slope (stiffness) k until the shear is greater than the shear at 
first cracking Vcr. When the shear exceeds Vcr, the unloading path is linear from the point on the envelope 
to Vcl as shown in Fig. 2(a).  Vl is calculated similarly to Vcr except that the concrete tension strength is 
assumed to be zero.  That is, Vl is the portion of Vcr due to the axial compression from gravity loads. 
 
Once the shear has exceeded Vcr in a previous cycle, reloading follows a linear path from Vcr to the point 
on the envelope at the maximum previous displacement. The reloading paths radiate from the point Vcr.  
The lower-bound reloading path extends from Vcr at a slope parallel to the lowest slope in the nonlinear 
segment of the envelope (see Fig. 2a) and intersects the yield plateau at a displacement ∆int (see Fig. 2b). 
Once the maximum displacement exceeds ∆int, all subsequent reloading follows the lower-bound trilinear 
reloading curve regardless of maximum displacement.  The unloading paths continue to return linearly 
from the point on the envelope to Vcl (see Fig. 2b). 

∆cr∆cl

Vcl

VNVN

Vcr

V

kk

∆N

1

∆
∆int

∆
∆int∆cr∆cl

Vcl

VNVN

Vcr

V

∆

k

∆N

1

a.) b.)

 
 

Figure 2.   Trilinear force-displacement hysteretic model: (a) early stages, (b) later stages. 
 
For mid-cycle reloading, the reloading path follows the initial slope k from the point where it leaves the 
unloading path (see Fig. 3).  The reloading path intersects and follows a linear path from Vcr to the 
previous maximum displacement.  When the maximum displacement exceeds ∆int, mid-cycle reloading 
follows the initial slope k until rejoining the lower-bound reloading curve described above.  
 
Computer program OpenSees (Open System for Earthquake Engineering Simulation) was used to 
conduct the nonlinear dynamic analysis for the current study. OpenSees is an open-source program in 
object-orientated C++ language. Most users perform numerical analysis in OpenSees using the Tcl 
scripting language. The object-oriented and open-source format allowed the model described above to be 
relatively easily implemented into a proven analysis program. 
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Figure 3.    Mid-cycle reloading. 

 
Nonlinear Dynamic Analysis 

 
OpenSees has several existing material models such as elastic and elastic-perfectly-plastic (EPP) along 
with more specialized steel and concrete uniaxial material models.  The basic framework for all material 
model subprograms implemented into OpenSees involves strain as input to the subprogram, and the 
resulting stress and tangent stiffness for the point on the stress-strain relationship is output from the 
subprogram. The strain is solved iteratively until equilibrium is reached. The framework can also be used 
with displacement input for force-displacement applications as was done in the current study. For the 
force–displacement model of cantilever shear walls described above, several history variables needed to 
be stored and updated in order to produce the proper loading or unloading behaviour. 
 
The hysteretic model described above was used to model the large-scale cantilever wall tested by Adebar 
et al. (2007) as a single-degree-of-freedom system.  The appropriate mass m was used in order to 

achieve an initial period of 2 and 4 seconds in the uncracked state.  Mass proportional Rayleigh damping 
of 5% was used for all analysis.   
 
The four ground motions selected for the nonlinear analysis were taken from the suite of ground motions 
used for calibration of the displacement modification procedure included within FEMA 440.  The ground 
motions are for National Earthquake Hazard Reduction Program (NEHRP) site class C and site class D, 
and further information is provided in Table 1.  The rationale for selecting these four ground motions was 
that they had a reasonably uniform increase in elastic spectral displacements in the 4 second period 
range. 
 

Table 1.   Characteristics of earthquake records. 
 

Date Earthquake 
Magnitude 

(Ms) 
Station name 

PGA 
(cm/s

2
) 

PGV 
(cm/s) 

PGD 
(cm) 

NEHRP 
Site class 

02/09/71 San Fernando 6.5 
Pasadena, CIT 

Athenaeum 
107.9 14.7 6.6 C 

06/28/92 Landers 7.5 Yermo, Fire Station 240.3 57.5 37.5 C 

10/17/89 Loma Prieta 7.1 
Anderson Dam 
(downstream) 

239.4 20.4 6.8 C 

02/09/71 San Fernando 6.5 
Vernon, Cmd 

Terminal 
104.6 17.5 20.6 D 
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The ground motions were scaled so that the elastic demand on the cantilever wall with either a 2 sec or 4 
sec initial period was R times the strength of the wall.  The ground motions were scaled to give R = 1.5, 2, 
2.5, 3, 4 and 5. Thus each ground motion was scaled to 12 different levels (6 R factors at 2 periods) 
resulting in a total of 48 different scaled ground motions. 
 
In addition, a companion set of synthetic ground motions were created using computer program SYNTH.  
This program iteratively modifies the accelerogram until the acceleration spectrum matches the prescribed 
target spectrum.  The target spectrum specified was an altered version of the National Building Code of 
Canada (NBCC) design spectrum for Vancouver, BC.  The design spectrum was altered to be more 
representative of longer periods.  The NBCC values of Sa for 2 and 4 seconds were used, but the 
decrease between them was taken proportional to 1/T as opposed to linear.  This decrease proportional to 
1/T was continued to T=6s when the decrease was set proportional to 1/T

2
 until T=10s.  The NBCC uses 

the Sa for 4 seconds for all periods greater than 4 seconds.  The alteration was done to reflect the levelling 
of spectral displacements for the longer periods.  This levelling behaviour was observed in all four of the 
raw ground motions selected. 
 
SYNTH calculates the acceleration spectrum for the raw accelerogram and determines the ratio between 
it and the target spectrum for a series of closely spaced periods specified by the user.  This ratio is used 
to modify (increase or decrease) both the real and imaginary Fourier components of the accelerogram.  
An inverse Fourier transform is then performed on the altered components to create a new accelerogram. 
The entire process is repeated on each new accelerogram for a user specified number of iterations; this 
number was set at the recommended 10.  SYNTH only changes the Fourier amplitude and does not 
change the Fourier phase spectrum because both the real and imaginary Fourier components are 
multiplied by the same ratio.  This means that the strong motion duration of the initial accelerogram is 
maintained in the synthetic accelerogram.  When examining the two accelerograms they appear quite 
similar with the “peaks” and “valleys” occurring in the same places but with different amplitudes.  SYNTH 
is able to produce a ground motion that very closely follows the desired target spectrum.  It is however 
important to select initial ground motions whose acceleration spectrums have similar shape to the target 
spectrum, primarily having peak accelerations occurring at similar periods.  This limits the amount the 
initial ground motion needs to be altered.  The selected raw ground motions have similarly shaped 
acceleration spectrums, as seen in Fig. 4.  The synthetic ground motions were also scaled to give six 
different R values (1.5, 2, 2.5, 3, 4 and 5) at two different periods (2 and 4 sec) resulting in an additional 
48 scaled ground motions.  

 
Results from Analysis 

 
For each of the 96 ground motions described above, a nonlinear analysis was conducted using the 
hysteretic model of the wall. A series of linear time step analyses were then conducted for a range of 
stiffness from the initial stiffness of the wall down to 20% of the initial stiffness at intervals of 1%.  The 
mass, and Rayleigh damping of 5%, was kept constant over the range of decreasing stiffness. The 
maximum displacement for each record was plotted versus the period of the structure resulting in the well 
know elastic displacement spectrum (see Fig. 5). 
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Figure 4.  Acceleration and displacement spectrums of the scaled and synthetic (SYN) ground motions for 

an elastic system with a period of 4 seconds. 
 
In addition, for each of the 96 ground motions, a series of nonlinear analyses were conducted using an 
elastic perfectly plastic model.  The yield plateau was held constant at the capacity Vn of the wall, while the 

elastic portion of the elastic–plastic response was modified similar to the linear elastic analysis described 
above. That is, the elastic stiffness was reduced from the initial stiffness of the wall down to 20% of the 
initial stiffness at intervals of 1%.  The maximum displacement for each nonlinear analysis was plotted 
versus the period of the structure calculated from the initial elastic range of response (see Fig. 5). The 
resulting displacement spectrum are very different than what is normally plotted for a bilinear response 
with a constant R factor as in current study, the strength of the elastic-plastic model was held constant and 
only the initial stiffness was reduced.  As the initial stiffness reduces, the corresponding elastic force 
demand reduces, and the required strength for a given R factor reduces. The resulting spectrum from a 
bilinear analysis (with constant strength) is more erratic than the commonly produced inelastic spectrums 
for constant R. 
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Figure 5.   Typical displacement spectrums determined assuming linear-elastic (E) response, and using a 

bilinear (B) model.  The examples shown are for synthetic ground motions with R = 3.0 based 
on an initial period of 4 sec. 

 
The displacement determined from each linear and nonlinear analysis at reducing stiffnesses (increasing 
periods) was normalized by the displacement determined from the corresponding nonlinear model of the 
cantilever high-rise shear wall.  Some typical results are shown in Fig. 6.  The results are shown for the 
non-synthetic earthquake (left) and the synthetic earthquake (right), and for R = 1.5 (top) and R = 3.0 
(bottom) based on the period of 4 sec.   

The following observations can be made from the typical plots shown in Fig. 6.  The difference between 
displacement ratios determined from the linear elastic response and bilinear response is less pronounced 
for R=1.5.  The displacement ratios increase in a more uniform way when determined from a linear 
analysis than when determined from a bilinear analysis for constant strength. The synthetic ground 
motions give less erratic results compared to the non-synthetic ground motions.  The displacement ratios 
determined from a linear elastic analysis using the synthetic ground motions seem to be the most useful 
for determining a relationship between predicted nonlinear displacement and stiffness reduction 
(increased period). Even with the synthetic ground motions scaled to the same initial R value, a large 
spread in displacement ratios is observed.  

 
Conclusions 

The important information contained in all the displacement ratio plots for the synthetic earthquakes are 
summarized in the two plots shown in Fig. 7.  The point in the displacement ratio plots at which the line for 
a particular earthquake and analysis type crosses the line at a displacement ratio of 1.0, indicates the 
period that is needed to get the same displacement estimate as the nonlinear model for the high-rise 
cantilever wall.  For example, the solid red line represents the results from different linear elastic analyses 
of the Yermo earthquake, while the red dashed line represents the results from different bilinear analyses 
of the Yermo earthquake.  For the case of R = 1.5 and the synthetic earthquakes (top right plot in Fig. 6), 
the lines cross the 1.0 displacement ratio at periods of 4.32 s and 4.30 s, respectively.  As the initial period 
of the structure is 4.0 s, the appropriate stiffness reduction factor α = ke /kg to be used for a linear elastic 

analysis and bilinear analysis (with constant strength) for this earthquake are 0.87 and 0.86, respectively.  
These results are plotted in the right-hand plot (for T = 4.0 s) in Fig. 7 at R = 1.5. 
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Figure 6.   Example displacements determined from elastic analysis (E) and elastic-plastic analysis (B) 

nomalized by the displacement determined from nonlinear model of cantilever wall.  
 

Fig. 7 shows all the results from the four synthetic earthquakes fit to National Building Code of Canada 
(NBCC) design spectrum for Vancouver, BC modified at the longer period range as described above.  If 
the effective stiffness of the nonlinear wall model is determined from the elastic stiffness of an equivalent 
bi-linear load-displacement relationship with equal area-under-the-curve up to the point that the non-linear 
curves cross the nominal capacity, the stiffness reduction factor α = ke /kg should be taken as 80%.  This 

corresponds reasonably well with the average of the results shown in Fig. 7.  While the influence of the 
particular ground motions is very significant, the average results in Fig. 7 do suggest a trend, which is that 
the stiffness reduction factor α = ke /kg reduces gradually as the force reduction factor increases.  For a 

structure where the stiffness of an uncracked wall results in a period of 2 sec, the trend is a gradual 
reduction from about 85% at R = 1.5 to a reduction factor of about 60% at an R = 5.0.  For a taller wall 
where the stiffness of the uncracked wall results in a period of 4 sec, the trend is for a reduction factor of 
about 90% from R = 1.5 to about R = 2.5, and then a gradual decrease in the reduction factor to about 
60% at R = 5.0.   
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Figure 7.   Stiffness reduction factors α = ke /kg versus force reduction factor R based on initial period for 

the four synthetic earthquakes. 
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