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ABSTRACT 

 
The objective of the current study was to determine the plastic hinge length in concrete wall systems using 
nonlinear finite element analysis. The parameters considered were wall length, wall height, level of shear 
stress, and level of axial load – both compression (due to gravity loads) and tension due to coupling beam 
shear forces. The analysis was performed using program VecTor2, which uses the Disturbed Stress Field 
Model to account for shear in reinforced concrete. To calibrate the model, comparisons were made 
between predictions and the strains measured in a large-scale isolated cantilever wall tested at UBC. The 
plastic curvatures were observed to vary linearly over about twice the length of the traditional plastic hinge 
length assuming the maximum plastic curvature is uniform.  The length of linearly varying plastic 
curvatures increase with wall length because larger strains cause the bending moment resistance of the 
wall to increase due to strain hardening, which results in an increase in height over which the bending 
moment exceeds the yield moment. Axial compression reduces the length of linearly varying plastic 
curvatures, while axial tension increases the length of plastic curvatures. Diagonal cracking due to shear 
increases the plastic hinge length, and a simple model was presented to estimate this increase.  An 
expression was presented for estimating the maximum curvature demand in a more flexible wall that is 
interconnected by rigid floor slabs to a less flexible (longer) wall. 
   

Introduction 

 
The flexural displacement capacity (ductility) of a concrete wall subjected to lateral seismic force depends 
on the vertical extent of plastic curvatures near the base of the wall, and the curvature capacity of the wall, 
which in turn depends on the compression strain capacity of concrete. The plastic curvatures near the 
base of a wall are assumed to be uniform over a height called the plastic hinge length.  Building code 
requirements, such as in ACI 318 and CSA A23.3, for determining whether confinement reinforcement is 
required in the ends of a concrete wall assume the plastic hinge length is equal to half the wall length. 
 
Concrete walls in a building are interconnected by slabs at every floor level. Thus the deflected shape of 
all parallel walls must be identical when displaced in a translation mode, which implies that the plastic 
hinge lengths of two such walls cannot be very different regardless of the wall lengths. No 
recommendations currently exist for what plastic hinge length should be used for walls of different lengths 
in a building. Similarly, no information currently exists for what plastic hinge length should be used for 
coupled walls where axial forces are the dominant forces applied to the vertical wall segments. 
 
The objective of the current study was to determine the plastic hinge lengths in complex wall systems 

                     
1
 Structural Engineer, Westmar Consultants, North Vancouver, BC, V7M 1B3.  

2
 Professor, Department of Structural Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4.  

1301



using nonlinear finite element analysis. To calibrate the model, comparisons were made between 
predictions and the curvatures measured in a recent large-scale isolated cantilever wall test. 
 

Previous Work on Plastic Hinge Lengths of Concrete Walls 

 
Paulay and Uzumeri (1975) modified expressions developed by Sawyer (1964) and Mattock (1967) from 
beam tests by assuming that the effective depth is equal to 80% of the wall length lw, and by assuming 

that the shear span is equal to the height of the wall hw resulting in the following two equations for plastic 

hinge length: 
 

  wwp h.l.l 075020 +=    (1) 

  

 wwp h.l.l 05040 +=       (2) 

 
The value of hw/lw for flexural concrete walls varies from a minimum of about 3 to a maximum of about 12, 

with most walls having a ratio from 5 to 10. Over this range, Eqs. 1 and 2 give a plastic hinge length lp 

varying from about 0.5lw to 1.0lw.  In his well known paper on the design of ductile reinforced concrete 

structural walls for earthquake resistance, Paulay (1986) stated that the plastic hinge length lp in walls 

varies from 0.5lw to 1.0lw. 

 
Paulay and Priestly (1993) presented the following equation for a lower-bound estimate of plastic hinge 
length in concrete walls: 
 

 wwp h.l.l 044020 +=    (3) 

 
Sasani and Der Kiureghian (2001) recently re-examined the test data from 29 of the larger beams tested 
by Mattock (1964) and Corley (1966), which were up to 750 mm (30 in.) deep, and proposed the following 
expression for mean plastic hinge length in concrete walls: 

  
d

z
.d.l p 0770430 +=        (4) 

where the second term has units of metres (m). 
 

Analytical Model 

 
The current study was conducted using VecTor2, which was developed by Frank Vecchio at the University 
of Toronto. The program can be used to perform nonlinear finite element analysis of two-dimensional 
reinforced concrete membrane elements using the constitutive relationships of the Disturbed Stress Field 
Model (Vecchio 2000), which is a refinement of the Modified Compression Field Theory (Vecchio and 
Collins 1986). A complete description of the program is given by Wong and Vecchio (2002). 
 
4-node plane stress rectangular elements with eight degrees of freedom were used to model the concrete 
with smeared reinforcement. A very fine mesh (about 11 elements per metre) were used to model the 
portion of the concrete walls where plastic hinging may occur.  A courser mesh was used above this zone. 
  
To calibrate the model, predictions were compared with the results of a test on a ¼ scale model of a 
slender concrete shear wall conducted by Adebar et al. (2004).  The test specimen was 11.76 m (38.5 ft) 
high and 1.625 m (64 in.) long resulting in a height-to-length ratio of 7.2. To simulate a portion of the core 
of a high-rise building, the wall had a flanged cross-section, a low percentage of vertical reinforcement 
(0.45%), and was subjected to a constant axial compression of 0.1fc'Ag. The maximum displacement at 

the top of the wall was 281 mm (2.4% global drift), and the elastic portion of this displacement was 46 
mm.  Assuming a compression strain capacity of concrete of 0.003, the total curvature capacity of the wall 
is 22 rad/km, and the elastic portion of the curvature capacity is 2 rad/km. The height from the base of the 
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plastic hinge to the level of measured wall displacement is 11.33 m. Using these values results in a plastic 
hinge length lp = 1.09 m, which is equal to 0.67lw. 

  
The curvatures of the wall were measured at numerous locations over the height, and these are compared 
with predictions from VecTor2 in Fig. 1. The predictions and experimental results, which are in reasonably 
good agreement, both indicate that the plastic curvatures (curvatures greater than the yield curvature) are 
not uniform over a plastic hinge length; but vary approximately linearly. A linearly varying plastic curvature 
distribution gives the same plastic rotation as calculated from the maximum plastic curvature assumed to 
be uniform over half the height of the linearly varying plastic curvature. 
 
Additional comparisons between predictions made with VecTor2 and other experimental results on 
concrete walls are presented by Bohl (2006). 
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Figure 1.    Calibration of analytical model: comparison with results from a large scale test (Adebar et al. 

2004). 
 

Plastic Hinging in Isolated Concrete Walls 

 
A parametric study was conducted to investigate plastic hinge length in isolated concrete walls. The 
parameters that were investigated included: wall length, wall height (shear span), level of axial 
compression or axial tension, and level of shear stress. Figure 2 summarizes the cross sections of the two 
walls W1 and W2 that were used for the parametric study on isolated walls. The concrete had a cylinder 
compression strength of 40 MPa, while all reinforcement had a yield strength of 400 MPa. The shape of 
the stress-strain relationship for the reinforcing bars was matched to test results from typical reinforcing 
steel used in ductile walls. Strain hardening was included using a simple linear relationship from a stress 
of 400 MPa occurring at an average strain of 0.01 to a stress of 650 MPa occurring at an average strain of 
0.061. Average strain refers to the strain measured over several cracks and including the influence of 
concrete tension stiffening. 
 

 

 

Experimental 

Predicted 
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Figure 2.    Details of walls used in study. 
 
Fig. 3(a) shows the curvatures in wall W1 and W2 at a global drift of 2% for a wall height of 54.86 m.  This 
drift is close to the displacement capacity of the longer wall. The curvatures vary approximately linearly 
near the base of the wall. Fig. 3(b) presents the steel strains in the walls at the same drift level.  As there 
are a number of layers of concentrated reinforcement, the steel strains vary.  The data points in Fig. 3(b) 
are for the outside layers of concentrated reinforcement on the tension side of the wall, i.e., the maximum 
and minimum strains in the concentrated reinforcement on the tension side of the wall. The steel strains 
clearly show at what level the tension reinforcement is yielding; however this does not define yield 
curvature. The yield curvature point in Fig. 3(a) is defined as the intersection of the two linear segments of 
curvature distribution. That is, the yield curvature is a section property that is not defined by any particular 
layer of reinforcement reaching the yield strain. For Wall W1 the yield curvature occurs at 8.4 m from the 
base, while for Wall W2 it occurs at 6.2 m from the base. In this paper, these heights are referred to as 
the length of linearly varying plastic curvatures lp*, which are approximately twice the length of the 

traditional plastic hinge length lp, which assumes the plastic curvature is uniform. 
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Figure 3.    Results from isolated walls at 2% drift: (a) curvature distributions, (b) vertical reinforcing steel 

strains. 
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Fig. 3(b) indicates that the reinforcing steel in the longer wall W1 exceeds the strain at which strain 
hardening starts (0.010), while the reinforcing steel in wall W2, which is half as long, does not strain 
harden. The reason for this is that for the same curvature, a longer wall has proportionally larger tension 
strains. Strain hardening of the reinforcement in wall W1 causes the bending moment resistance of the 
wall to increase, which results in an increase of the height over which the bending moment exceeds the 
yielding moment. This in turn causes an increase in the height of linearly varying plastic curvatures, and is 
an explanation of why the plastic hinge length of a wall increases proportional to wall length. 
 
Fig. 4 summarizes the length of linearly varying plastic curvatures lp* in wall W1 (top) and W2 (bottom) at 

different levels of axial force; compression is (–) and tension is (+). The results are shown for a number of 
drift levels up to the drift capacity of the longer wall.  Axial compression generally reduces the drift capacity 
of a wall. The walls with axial tension are relevant for coupled wall systems where the up lift is generated 
by the shear forces in the coupling beams. The results indicate that axial compression reduces the plastic 
hinge length, while axial tension increases the plastic hinge length. The reason for this is the shape of the 
bending moment – curvature relationship. When a wall is subjected to axial tension, the ratio of Mmax to My 

is significantly increased, while when a wall is subjected to axial compression, the ratio decreases.  Mmax is 

the maximum bending moment at the curvature capacity of the wall, while My is the bending moment at 

the yield curvature of the wall. 
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Figure 4.    Influence of axial load on length of linearly varying plastic curvatures lp* at varying drift levels: 

(a) wall W1, (b) wall W2. 
 
Fig. 5 examines the influence of shear stress on the length of linearly varying plastic curvatures. For both 
wall W1 and W2, the yield curvature was determined from the bending moment – curvature relationships 
ignoring the influence of shear. The bending moment at yield curvature, i.e., the yield moment, ignoring 
the influence of shear was used to predict the height of linearly varying plastic curvatures lp* from the 

bending moment diagram, and these were compared to the observed height of linearly varying plastic 
curvatures in Fig. 5(a). For cases where there was significant diagonal cracking, the length of linearly 
varying plastic curvatures significantly exceeds the length over which the bending moment exceeds the 
yield moment by up to a factor of almost 2. The reason for this is the additional tension force demands on 
the vertical reinforcement in a wall caused by shear in a diagonally cracked member. 
 
A simple model for additional tension force demand due to shear on the vertical reinforcement on the 
flexural tension side of the wall is Tv = V/2.  This assumes that the shear is resisted entirely by diagonal 

compression at 45 degrees, and that there is no significant concrete contribution (concrete tension 
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stresses). The vertical tension force can be converted to a bending moment by multiplying the force by the 
internal flexural lever-arm normally assumed to be 0.8lw for a wall. Thus the additional bending moment in 

a wall due to shear is Mv = 0.4V·lw.  When this additional bending moment is added to the bending 

moment due to the applied lateral load, the height over which the bending moment exceeds the yield 
moment increases. 
 
The predicted height of linearly varying plastic curvatures lp* based on the adjusted bending moment is 

compared with the observed height of linearly varying plastic curvatures in Fig. 5(b). The additional 
bending moment due to shear is only added when there is significant diagonal cracking. For the results 
shown in Fig. 5, this is when the shear stress is equal to or greater than 1.8 MPa, which corresponds to 

cf. ′30 . Fig. 5(b) indicates that the simple model used to account for the influence of shear works well at 

high drift levels; but is conservative (gives short lengths) at lower drift levels. The reason for this is 
because the influence of concrete tension stress (the concrete contribution) was ignored for simplicity.  At 
lower drift levels, the influence of concrete tension stresses is significant on reducing the tension force 
demand on the vertical reinforcement. 
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Figure 5.    Influence of shear stress on predicted length of linearly varying plastic curvatures: (a) ignoring 

shear, (b) accounting for shear using proposed simple model. 
 

Plastic Hinging in Inter-connected Concrete Walls 

 
Concrete walls in a building are interconnected by slabs at every floor level.  Thus the deflected shape of 
all parallel walls must be identical when displaced in a translation mode, which implies that the plastic 
hinge lengths of two such walls cannot be very different regardless of the wall lengths. As no information 
currently exists regarding what plastic hinge length should be used for walls of different lengths in a 
building, this was investigated in the current study. 
 
Fig. 6 presents the results for Walls W1 and W2 when they are isolated (denoted in the figure by A for 
Alone), and when they are combined together (denoted by C). All walls are 54.86 m high, and the 
displacement at the top of the walls is about 1.10 m (2% global drift) at the deformations shown in Fig. 6. 
To create the combined case, the walls were interconnected by rigid diaphragms at 20 story levels. The 
height of each story was 2.743 m. Neither the curvatures of Wall W1 shown in Fig. 6(a), or the maximum 
steel strains in Wall W1 shown in Fig. 6(b) indicate any significant difference when the wall is isolated or 
combined with wall W2.  It seems reasonable that a more flexible wall (W2 in this case) would not have a 
significant influence on the deformations of a longer and less flexible wall (W1 in this case). 
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In the case of Wall W2 however, there does appear to be a very significant effect whether the wall is 
isolated (Alone) or combined with Wall W1. The length of linearly varying plastic curvatures lp* does not 

appear to be significantly influenced, however the maximum curvature and the maximum steel strain at 
the base of the wall are significantly increased. The expected result was that when the two walls are tied 
together at numerous floor levels, the curvature distributions would be very similar in order for the 
displacements of the two walls to match at the floor levels. Clearly the curvature distributions are not 
similar and thus the displacements of the two walls require further examination. 
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Figure 6.    Influence of interconnecting two walls of different lengths by rigid floor slabs: (a) curvature 

distributions, (b) maximum steel strains. 
 
Fig. 7 summarizes the displaced shapes of the walls resulting in the curvatures and steel strains shown in 
Fig. 6. Figure 7(a) shows the displacements over four floors, while Fig. 7(b) shows a close up of the 
displacements in the first story. The total displacements of the two walls are exactly equal at each floor 
level as the floor slabs were modeled as rigid diaphragms; however the flexural displacements of the two 
walls are not equal. Wall W1 has significantly more shear deformation than Wall W2. The two walls have 
the same width; and Wall W1 is twice as long as Wall W2. Thus Wall W1 has twice the shear area and 
twice the shear stiffness of Wall W2. On the other hand, Wall W1 has a flexural stiffness that is (2)

3 
= 8 

times larger than Wall W2. In the upper floors of the building where flexural displacements dominate, Wall 
W1 resists much more than twice the shear resisted by Wall W2, which is why W1 has larger shear 
deformations. 
 
A simple expression was developed for estimating maximum curvature demand in the smaller wall 
(referred to as Wall 2 in the discussion below). It is based on the assumption that the deformations of the 
structure are controlled by the longer wall (called Wall 1), and that the flexural slopes of the walls 
(integrals of the curvatures) are equal immediately above the region of plastic curvatures. Immediately 
above the region of linearly varying plastic curvatures in the longer wall, the curvatures in both walls are 
assumed to be equal to the yield curvature of the longer wall φy1. The curvatures in the longer wall are 

assumed to vary linearly from φy1 to a maximum value of φm1 at the base of the wall over the length 

(height) of lp1*. The curvatures in the smaller wall are assumed to vary linearly from the yield curvature of 
the smaller wall φy2 to a maximum value of φm2 at the base of the wall over the length (height) of lp2*. 
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Figure 7.    Displacement profiles of interconnected walls: (a) lower four floors, (b) close up of first floor. 

 
From the height of lp2* to lp1*, the curvatures in the smaller wall are assumed to vary linearly from φy2 to 

φy1. With these assumptions, the following simple expression results for the maximum curvature at the 

base of the smaller wall: 
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−=    (5) 

 

For the curvature distributions shown in Fig. 6(a) (combined wall case), the following values are relevant: 
lp1* = 8.39 m, lp2* = 4.64 m, φy1 = 0.00045 rad/m, φy2 = 0.00090 rad/m, φm1 = 0.00326 rad/m. Substituting 

these values into Eq. 5, and solving gives: φm2 = 0.00472 rad/m.  The actual value was 0.00456 rad/m. 

 
Conclusions 

 
The plastic curvatures were observed to vary relatively linearly from a maximum value at the base of the 
wall, over about twice the length of the traditional plastic hinge length assuming the maximum plastic 
curvature is uniform. 
 
The analyses indicate that longer walls have proportionally larger tension strains at the same curvature.  
Strain hardening of the reinforcement due to this larger strain causes the bending moment resistance of 
the wall to increase, which results in an increase in the height over which the bending moment exceeds 
the yield moment. This in turn causes an increase in height of linearly varying plastic curvatures, and is an 
explanation of why the plastic hinge length of a wall increases with wall length. 
Axial compression reduces the length of linearly varying plastic curvatures, while axial tension increases 
the length of plastic curvatures. The reason for this is the shape of the bending moment – curvature 
relationship. When a wall is subjected to axial tension, the ratio of maximum moment at the curvature 
capacity of the wall to the yield moment of the wall is significantly increased, while when a wall is 
subjected to axial compression, the ratio decreases. 
 
For cases where there was significant diagonal cracking, the length of linearly varying plastic curvatures 
significantly exceeded the length over which the bending moment exceeded the yield moment. The reason 
is the additional tension force demand on vertical reinforcement due to shear in a diagonally cracked 
member. A simple model was presented to account for this effect. 
 
The influence of two different length concrete walls being interconnected by rigid floor slabs at every floor 
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level was investigated. As expected, the more flexible wall did not have a significant influence on the 
deformations of the longer, less flexible wall; but the longer wall did have a significant influence on the 
more flexible wall. A simple expression was developed for estimating the maximum curvature demand in 
the more flexible wall assuming the flexural slopes of the walls are equal immediately above the region of 
plastic curvatures. 
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