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ABSTRACT 

 
Accelerograms of earthquake ground motions resulting from severe subduction earthquakes are 
usually characterized by long duration of strong motions. Experiments conducted worldwide on 
models of civil engineering facilities have shown that their response to such long duration of strong 
motion is hysteretic and includes several cycles with significant reversals of plastic deformation. 
Development of plastic deformation or physical ductility means potential damage, therefore the 
spectrum to be used for earthquake resistant design of structures should account for such observed 
cyclic inelastic dynamic response. Unfortunately in the past most of the publications on seismic 
design have based the design spectrum only on the maximum lateral deformation which is not a 
reliable parameter to account for the possible damage because it neglects the reversals of plastic 
deformation and on the ductility ratio (non cyclic) which is not a physical parameter to measure 
damage but just a target value to limit the maximum lateral response. In this study the envelope of the 
hysteretic response is used to demonstrate that the physical ductility limited by a cyclic ductility ratio is 
a more reliable measure of damage. Demand spectra for target values of cyclic and non cyclic 
ductility ratios are compared making emphasis on the difference between cyclic physical ductility and 
non cyclic physical ductility demand. The study demonstrated that demands calculated for target 
cyclic ductility ratios are more reliable than those obtained for target non cyclic ductility ratios for 
estimating the structural damage which is the result of development of physical ductility.    

 
Introduction 

 
The practice of earthquake resistant design is at present based on designing for a reduced strength of 
that required by elastic behavior using a constant reduction factor and, for controlling the demanded 
maximum lateral deformation accepting inelastic behavior that is considered is given by the 
conventional ductility ratio. This is called herein Non Cyclic Ductility Demand Ratio defined as the 
quotient between the maximum lateral deformation |um| and the yielding deformation uy of a structural 
system subjected to a ground motion. However, there have been studies where the rationality of this 
approach has been questioned demonstrating that reduction factors are not constant (Miranda and 
Bertero 1994) and that the cyclic deformation should be used to account for the hysteretic response 
(Mahin and Bertero 1978). Designing for earthquakes means reducing strength but controlling ductility 
because development of ductility physically means damage therefore, in order to use a more reliable 
measure of damage for design the physical ductility should be measured at least in the envelope of 
the hysteretic response considering the reversals of plastic deformation.  
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Additionally, physical ductility should be limited by a Cyclic Ductility Demand Ratio since the Non 
Cyclic one does not consider the reversals of deformation observed in Fig. 1a which shows the 
hysteretic force-deformation relation of a laboratory tested structural component (Krawinkler, Bertero, 
and Popov 1971). 
 
The effect of reversals of plastic deformation was studied by (Mahin and Bertero 1978) who discussed 
the Cyclic Ductility demand Ratio (CDR) concept which was defined as “the relation between the 
maximum cyclic deformation uc measured on the envelope of all hysteretic responses and the yielding 
deformation uy of a structural system subjected to a ground motion” (Fig. 1b).  

 

Later, (Lara, Parodi, Centeno, and Bertero 2004) used this concept to introduce the concept of Cyclic 
Physical Ductility Demand and compared it with the Non Cyclic Physical Ductility Demand for 22 near 
source ground motions. They showed that the differences depend on the structure period, on the 
cyclic or non cyclic ductility ratio selected and on the ground motion. Similar conclusions were 
obtained for the Cyclic Strength Demand and Non Cyclic Strength Demand spectra.  
 
The main objective of this study is to investigate the effects of cyclic physical ductility measured in the 
hysteretic responses of elastic perfectly plastic Single Degree of Freedom (SDOF) systems subjected 
to subduction ground motions. 
  

Cyclic and Non Cyclic Ductility Ratios 
 

Consider a SDOF system with period T and damping ratio ξ subjected to a ground motion and 
assume that the system is designed for a strength Fy lower than the elastic strength demand F0. 
Assume also that the system under the dynamic excitation will respond with several cycles including 
reversals of plastic deformation as shown in Fig. 1a and that Fig. 1b is the idealized Elastic perfectly 
Plastic (EP) envelope of all hysteretic loops that could have developed during dynamic response.  
 
Non Cyclic Ductility Demand Ratio 
 
This is a parameter conventionally used to limit the structure lateral maximum inelastic deformation in 
such a way that local element deformations are limited to acceptable levels. It is defined as:  
  

    µnc = |um| / uy                                                                  (1) 
 
Where µnc is the conventional or non cyclic ductility demand ratio (NCDR) and um is the absolute 
value of the maximum lateral deformation measured on the envelope of all hysteretic cycles of the 
structure response. For the example of Fig. 1b, um = -5uy. Since um does not consider the cyclic 
characteristic of the response of the structure it will be more properly called the maximum non cyclic 
lateral deformation.  
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Figure 1a.   Force deformation relations for structural components in structural steel (Krawinkler, 

Popov & Bertero, 1971). 
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Figure 1b. Elastic perfectly plastic force deformation relationship 

 
Cyclic Deformation and Cyclic Ductility Demand Ratio 
 
It can be seen in Fig. 1b that the structure not only has suffered a positive plastic deformation but also 
a negative plastic deformation. The criteria of using only the maximum deformation um

-
 = -5uy, 

neglects the fact that the structure already had entered into the plastic range when it yielded for the 
first time and deformed plastically until reaching um

+
 = 4uy. Therefore in order to have a better 

estimation of the total physical ductility this prior maximum deformation should be included to the 
maximum um

-
 = -5uy by means of a cyclic deformation uc. This uc is defined herein as the cyclic 

deformation measured on the envelope of the hysteretic time history response between a zero force 
crossing and the maximum deformation |um| at the other extreme of the envelope. Knowing uc the 
Cyclic Ductility demand Ratio (CDR) can be defined as:    
      

        µc = uc/uy                                                                                                               (2) 
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This parameter will be used to limit the structure cyclic deformation to a value that will control local 
element deformations to acceptable levels and it is intended to present it as a substitute of the 
conventionally used NCDR. 
 

Concept of Cyclic Physical Ductility Demand 

Cyclic Physical Ductility demand (PD) has been defined by (Lara, Parodi, Centeno and Bertero 2004) 
as ucp = (uc - uy). Since ucp is measured in the envelope of all hysteretic loops the total CPD for the 
model of Fig. 1b is ucpt = 2ucp.  It is known that development of physical ductility in critical regions of 
the structure during a ground motion means developing of damage therefore, it is proposed that cyclic 
PD be considered as a measure of damage. As a way of comparison, (Lara, Parodi, Centeno and 
Bertero 2004) also defined the Non cyclic Physical Ductility demand as the difference uncp = (|um| - uy) 
measured in the same envelope but referred only to the conventional maximum non cyclic lateral 
deformation. 

Cyclic Physical Ductility as a Measure of Damage 
 
Consider a SDOF structure of unit mass, initial stiffness of 394.3 kN/m, elastic strength of 7.5 kN and 
damping ratio of 5% responding inelastic to a subduction type ground motion (Llayllay record of the 
1985 Chilean earthquake).  
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Figure 2.  Time History Response for SDFS with T=1.00s Designed for a) Non Cyclic and b) Cyclic 

Ductility Ratio Llayllay Record from Valparaiso Earthquake 1985. 
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Figure 3.  Hysteretic Response for SDFS with T=1.00s Designed for a)Non Cyclic and b) Cyclic 
Ductility Ratio Llayllay Record from Valparaiso Earthquake 1985. 

 
Consider also a conventional design where the lateral deformations will be limited to a target non 

cyclic ductility demand ratio µnc = 6. Fig. 2a, where every yielding and plastic deformation has been 
colored, shows the time history response of this T = 1.0 sec structure. The maximum lateral 
deformation which is negative, occurs at time t = 58 sec, measures 11.74 cm and since the yielding 
deformation is 1.96 cm (Fig. 3a), µnc = 6 as expected. However, µnc is just a number and should not be 
considered as a measure of damage. Damage is ductility and the only ductility under the µnc concept 
is the non cyclic physical ductility. In this case uncp

-
 = 9.78 cm. But, it should be noted in Fig. 2a that 

besides the maximum negative there are several other deformations including another maximum in 
the  positive direction that occurs before the negative at t = 30 sec, measures 10cm and has not been 
considered in the above calculations. It is clear then that damage can not be due only to the uncp

-
 = 

9.78 cm but due also to the other plastic deformations in the response. If of all other plastic 
deformations at least the maximum positive in the envelope is considered the corresponding uncp

+
 is 
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10.00 – 1.96 = 8.04 cm. Therefore, the total physical ductility demand which covers the total plastic 
deformation measured in the envelope of all hysteretic responses (Fig. 3a) is ucpt = 35.64 cm which is 
3.6 times 9.78 cm. Consequently it can be concluded that to consider only the maximum lateral 
deformation to have an estimate of the physical ductility causing damage misses a large amount of 
ductility to be measured in the envelope of all hysteretic loops. 
 
Assume now that the designer considers to limit the cyclic deformation uc of the same structure to a 
target cyclic ductility ratio µc = 6. In Fig. 4 at about 26 sec the structure reaches a maximum positive 
deformation of 9.37 cm. However, this maximum positive deformation is followed by 6 cycles of 
inelastic deformation including reversals of plastic deformation and after all those cycles a maximum 
negative deformation of 17.83 cm at about 31.4 sec is achieved (Fig 2b). Both maximum deformations 
are the extremes of the envelope of all the hysteretic responses shown in Fig 3b which also shows 
that the yielding deformation is 3.89 cm. According to above definitions the cyclic deformation is uc = 
23.31 cm and µc = 6 as expected. But µc is again another number and neither should be considered 
as a measure of damage but just as a target value to limit the cyclic deformation. Thus in this study it 
is proposed the use of cyclic physical ductility demand calculated using µc, as a measure of damage 
because it considers the plastic deformation beyond yielding including the reversal of plastic 
deformation measured in the envelope of all hysteretic responses (Figs. 3b). Then, ucp = uc – uy = 
19.42 cm and ucpt = 38.84 cm.  
 
It is important to mention that when the µnc = 6 controls |um| a value for ucpt was calculated as twice the 
summation of uncp

+ 
and |uncp

-
|. However, as it will be seen later the selection of µnc has another 

implication regarding the strength reduction factor. For this reason conceptually ucpt must be obtained 
from a response where uc and ucpt are limited by µc.  
 
The ucpt has the advantage of giving the designer an estimation of the total cyclic physical ductility 
demand limited by µc and measured in the envelope of the hysteretic response. The uc includes the 
elastic, the plastic and the maximum reversal of plastic deformation. Consequently uc becomes a 
better estimation of deformation demand than just the maximum lateral or non cyclic maximum 
deformation demand |um|. 
  
From the above example there are some other important issues to be considered like the reduced 
strength demand, the resulting strength reduction factor, the cumulative plastic deformations, the 
number of inelastic excursions and, the energy dissipated through inelastic behavior of this T = 1 sec 
structure for both non cyclic (Fig. 3a) and cyclic ductility ratio (Fig. 3b). 
 

Designing for Cyclic Physical Ductility 
 

Observing Fig. 3b the yielding strength demanded by the ground motion to meet the target µc = 6 is Fy 
= 1.53 kN and since the elastic strength demand is 7.53 kN, the cyclic strength reduction factor Rµc for 
the T = 1.0 sec structure is 4.9. The yielding strength demand to meet the target µnc = 6 (Fig. 3a) is Fy 
= 0.77 kN then the corresponding non cyclic strength reduction factor Rµnc is 9.75. The differences in 
both values of R are extremely large, i.e. Rµnc is almost 100% larger than Rµc.  That is, if µnc = 6 is 
used for design the required strength is almost half of that required if µc = 6 is decided to use for 
design. These results could be appealing for the designer since he/she could think is producing an 
economical design choosing µnc = 6. According to the µnc design concept, the strength Fy = 0.77 kN 
restricts the maximum lateral deformation |um| to 11.74 cm (Fig. 3a). However, as above explained the 
dynamic response is cyclic and there is a deformation in the opposite side that completes the 
envelope of the hysteretic response reaching 10.00 cm giving a cyclic deformation uc = 19.78 cm 
which the strength of 0.77 kN would not be able to maintain during the response. Regarding damage 
as above defined the strength Fy = 0.77 kN is able to keep uncp at a maximum of 9.80 cm (Fig. 3a) 
however, that strength will not be able to restrict ucpt  at 39.8 cm. Clearly with Fy = 0.77 kN the 
structure will be subjected to a considerable larger amount of damage. On the contrary, if the 
designer chooses µc = 6 for design, the yielding strength Fy = 1.53 kN will be able to keep the cyclic 
deformation uc at a maximum value of 23.31 cm and ucpt at a maximum value of 38.84 cm (Fig. 3b) for 
that ground motion. If the designer considers that these deformations are too large he/she can reduce 
µc and restrict uc and uncpt to lower values. 
 
Using µnc = 6 the number of inelastic excursions reaches 73, the cumulative plastic deformations is 
168.9cm, the damping energy is 0.53 kN-m and the hysteretic energy dissipation demand is 1.31 kN-
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m while using µc = 6 the number of inelastic excursions is 42, the cumulative plastic deformations add 
94.1 cm, the damping energy is 0.94 kN-m and the energy dissipation demand is 1.44 kN-m. Clearly 
using µnc the number of inelastic excursions is 74% larger, the cumulative plastic deformations are 
80% larger and the dissipation of energy demanded is 8.5% lower than when using µc. The large 
number of inelastic excursions and the large cumulative plastic deformations using µnc indicate larger 
potential damage than using µc. 

 
Equation of Motion 

 
The time history response of a nonlinear SDOF system subjected to EQGMs is given by the solution 
of the following equation of motion: 

 

mü + ců + Fs = - müg (t)                            (3) 

 
Dividing by m and setting c = 2mωnξ gives: 

ü + 2ζωnů +
m

Fs  = -üg (t)                                                                                                (4) 

          
In equations 3 and 4, m is the mass, c is the damping coefficient, Fs is the elastic resistance which 
after been reduced by a reduction factor R becomes the restoring force Fy. The resistance function for 
this investigation is assumed to be EPP, ωn is the natural frequency of the structure in the elastic 

range and also when the inelastic system vibrates within the elastic range and ζ is the fraction of the 
critical damping in the elastic and supposed to be the same in the inelastic range. The relative 
deformation response is u, üg(t) is the ground acceleration and ů is the relative velocity response. 
Equation 4 is solved for the deformation response, u, using the numerical method proposed by 

(Newmark 1959).  
 

Strength Reduction Factor Demand Spectra 
  
It is known that the area of all cycles of inelastic response shown in the hysteretic time history (Figs. 
3a and 3b) equals the energy dissipated during dynamic response. The structure capacity to dissipate 
energy through inelastic hysteretic behavior induces a reduction in forces from the elastic level and 
since dissipation of energy varies for every period the reduction is not a constant. Codes however 
have expressed this reduction using constant reduction factors which according to (Miranda and 
Bertero 1994) are based on observations of structural performance during past earthquakes. The use 
of large reduction factors as recommended by the codes increases considerably the maximum lateral 
deformations (Lara and Bertero 2003). Reduction factors should account for damping, energy 
dissipation capacity and overstrength (Miranda and Bertero 1994) and also depend on the period.  
 
However, the influence of the strength reduction factors is not only in the reduction of the elastic force 
demanded by the ground motion. They also influence on the control of maximum (cyclic or non cyclic 
lateral) deformations through the ductility ratios (µc or µnc) because during inelastic response as the 
yielding strength decreases due to an increase in the reduction factor, uc or |umax| increase. Therefore 
it is necessary to estimate the strength required in a structure to limit the deformations. Fig. 4 shows 
the strength reduction factor spectra calculated for µc = µnc = 6 for SDOF structures subjected to four 
subduction ground motions. The results for other values of µnc and µc are not shown due to limitations 
on the number of pages.  
 
For the Chilean records differences between Rµc and Rµnc are very small for T ≤ 0.5 sec and become 
more important for longer values of T. The largest differences occur in different period ranges. For 
Valparaiso between T = 2.5 and 3.5 sec, for Llayllay between T = 1.2 and 2.4 sec, and for Llolleo 
between T = 1.7 and 3.8 sec. For the Mexican Caleta record differences between Rµc and Rµnc begin 
at T = 1 sec being the largest between T = 2 and 3 sec. For instance, for T = 2.5 sec, Rµnc = 19 and 
Rµc=8. 
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Figure 4.  Cyclic and Non Cyclic Strength Reduction Factor Demand Spectra for µnc and 

µc = 6. ξ = 5%. 
 
The reasons for these differences are first, due to the numerical procedure involved in the calculation 
of the ductility ratio. The first step in the numerical solution of the differential equation of motion for 
inelastic response is to reduce the elastic strength to Fy by means of a factor R´ larger than 1. The 
solution of equation 4 will provide a maximum lateral or a maximum cyclic deformation which divided 
by uy will give values for µnc or for µc. Repeating this procedure there will be a value for µnc or µc for 
every R´. However these values of ductility ratio will be different from the pre determined target values 
therefore it becomes necessary to interpolate them with respect to R´. In this study the values of R´ 
introduced in equation 4 begin with 1.25 and vary every 0.25. The second reason is due to the 
measuring of the maximum deformation. When the maximum lateral deformation is measured in order 
to meet the pre determined target value of µnc there is a value of R´ associated to µnc and when the 
cyclic deformation is measured to meet the pre determined value of µc  the associated value of R´ is 
different. The reasons are that the cyclic deformation is always larger or at least equal to the 
maximum lateral deformation and that the strength required to limit uc is larger than that required to 
limit um. Therefore the value of R´ = Rµc for µc will be lower or equal than the value of R´ = Rµnc 
required to meet the target value of µnc.  
 
It should be noted that observing Fig. 4 the strength reduction factor Rµnc or Rµc can not be a constant 
value as recommended by the codes. Consider the Llolleo spectrum (Fig. 4) and assume that a 
constant Rµnc = Rµc = 6 is chosen for design. Two structures with periods T = 2.6 and 4 sec are 
affected by this strength reduction factor although the differences in stiffness is 2.37. Noticing that the 
ordinates of both spectra for those periods are the same, for T = 2.6 sec and µnc = µc = 6, |um| = 6uy  
and uc = 6uy while for T = 4 sec and µnc =  µc = 6, |um| = 14.2uy and uc = 14.2uy being 14.2uy an 
undesirable value for maximum cyclic or non cyclic deformation. Clearly R´ varies with cyclic or non 
cyclic ductility ratios and with the period. Consequently, the appropriate definition of the reduction 
factor expressed by (Miranda and Bertero 1994) holds and is equal to: 

 

Rµ = Fy (µ = 1) / Fy ( µ = µi )                                                                          (5)   
 
Where Rµ = Reduction in elastic strength demand due to inelastic hysteretic behavior of the structure; 
Fy (µ = 1) is the elastic strength demand = F0 in Fig. 1b; Fy ( µ = µi ) is the yielding strength required to 
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keep µnc or µc at values lower or equal than the target non cyclic or cyclic ductility ratio respectively, 
previously selected.  
 

Cyclic and Non Cyclic Strength Demand Spectra 
 
Fig. 5 shows Cyclic Strength Demand Spectra (CSS) and Non Cyclic Strength Demand Spectra 
(NCSS) for the Valparaiso, Llayllay and Llolleo records of the 1985 Chilean earthquake as well as for 
the Caleta record of the 1985 Michoacan earthquake. The ordinates represent the seismic yielding 
coefficient Cy and the abscissas the structure periods T. It is not possible due to limitations of space to 
show the spectra for different values of µnc and µc.    
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Figure 5.  Cyclic Strength Demand Spectra (CSS) & Non Cyclic Strength Demand Spectra (NCSS) 

for µnc and µc = 6. ξ = 5%. 
 
For all the cases the ordinates of µc = 6 are larger than those of µnc = 6 which agrees with the 
discussion about the strength reduction factor spectra. The µnc spectra present some sudden 
decreases of the ordinates not seen in the µc spectra . For instance, for Llayllay record and µnc = 6 
there are decreases in the ordinates which appear smoothly in the CSS. These decreases are due to 
the sudden increases of the strength reduction factor that occur when µnc is used (Fig. 4) because it 
does not measure the cyclic deformation. The maximum differences in ordinates for Llayllay occur at 
T = 1 sec for µnc = µc = 6 where Cy for µc = 6 is about 0.16 while Cy for µnc = 6 is about 0.09. This is 
because Rµnc is larger than Rµc. For long period structures the difference in the ordinates becomes 
negligible because acceleration response in very flexible structures tends to zero. Note that for the 
Valparaiso record there are three structures affected by Cy = 0.15. Consider two of them with periods 
T = 0.06 and 0.3 sec which for Cy = 0.15 have the same ordinates for both spectra. The differences in 
stiffness is 5 thus for T = 0.06 sec and µnc =µc = 6, |um| = 6uy and uc = 6uy while for T = 0.3 sec and µnc 
= µc = 6, |um| = 30uy and uc = 30uy being 30uy an extremely undesirable value for maximum cyclic or 
non cyclic deformation. Therefore, design should not be based on the results of strength spectra but 
on physical ductility. 
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Cyclic and Non Cyclic Physical Ductility Demand Spectra 
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Figure 6.  Cyclic Physical Ductility Demand Spectra (CPDS) & Non Cyclic Physical Ductility 

Demand Spectra (NCPDS) for µnc and µc = 6. ξ = 5%. 
 
Fig. 6 shows the Cyclic and Non Cyclic Physical Ductility Demand Spectra for µc = µnc = 6 respectively 
for the same records as in Fig. 5.  All the characteristics of the spectra shown are similar to the 
spectra calculated for other ductility ratios and not shown due to limitations of space. The physical 
cyclic and non cyclic physical ductility demands were already defined in this study. They represent 
physically the amount of plastic deformation demand measured on the envelope of the hysteretic 
responses for each period structure and also represent the potential damage because damage occurs 
when ductility is developed. For instance, for the Llayllay record when µnc = µc = 6, for T = 1 sec, ucp is 
about 36 cm while uncp is about 10 cm. The difference is due to the measuring process of physical 
ductility (PD) which in the case of µnc the non cyclic PD is just uncp = (|um| - uy) while in the case of µc 
the total cyclic PD is ucpt = 2(uc – uy), i.e. the plastic deformation in the envelope of all the hysteretic 
loops. Therefore total ucpt represents physically a better measure of the potential damage. Recalling 
Fig. 5 it was determined for the same record and structure that Cy = 0.09 for µnc and Cy = 0.16 for µc. 
This low strength Cy = 0.09 will be able to restrict only non cyclic PD to about 10 cm but it will not be 
sufficient to limit the cyclic PD that for this design amounts to about 36 cm. Instead, designing for Cy = 
0.16 this strength will restrict the ucpt to 39.84 cm demanded by the same record. Therefore the 
expected damage using µnc will be considerable larger than if µc is used. It should be noted that 
because the total PD in the envelope is measured for µc these spectra are smoother than those for 
µnc. The sudden changes in µnc spectral ordinates, like those at T = 3.4 sec in the Valparaiso record 
are due to instabilities in the numerical procedure and because µnc allows to measure PD, only as part 
of um neglecting cycle and reversals of deformations. 
 

Conclusions 
 
In this study cyclic total Physical Ductility (PD) ucpt measured in the envelope of all hysteretic 
responses has been proposed as a more appropriate measure of damage. Cyclic deformation uc 
measured in the same envelope is used to calculate cyclic ductility ratios µc which are proposed as 
substitute for conventional non cyclic ductility ratios µnc based on maximum non cyclic lateral 
deformation |um|, because |um| neglects the cyclic deformations that occur during dynamic response. 
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Analytical and experimental studies have shown that providing ductility and toughness to a structure 
allows it to develop hysteretic inelastic behavior which reduces the strength required to maintain 
elastic behavior. It has been shown herein that these reductions depend on the period and on the 
ductility ratio and are not constant as indicated by Codes. Non cyclic strength reduction factors Rµnc 
that control |um| are larger than cyclic ones Rµc that control uc (for the same values of µnc and µc) 
because cyclic deformations and required strengths are larger than non cyclic ones. Therefore 
acceleration spectral ordinates for µnc are lower than those of µc leading the designer to use µnc. If µnc 
is used for design the resulting low strength will not be enough to restrain ucpt. Therefore, design 
should be based on total cyclic PD limited by µc and then estimating the appropriate strength that will 
limit the total cyclic PD. The additional strength resulting for using µc protects the structure for the 
design earthquake as well as for aftershocks and future less severe ground motions. A structure 
designed for µnc not only will not be able to restrain the structure to the cyclic PD demand but if it 
survives a severe design earthquake it will remain weak and will not stand a possible aftershock. 
Consequently, estimations of cyclic strength and cyclic physical ductility demands become more 
reliable measures of inelastic behavior than just the non cyclic strength or the non cyclic physical 
ductility. In this study it has also been shown the large cumulative PD and the large number of plastic 
excursions in the response of structures designed using µnc with respect to those values when µc is 
used. These large values indicate larger potential damage. Cumulative PD is the total plastic 
deformation but it is not known the potential damage of each plastic excursion thus estimations of ucpt 
demands become more reliable measures of inelastic behavior than just the non cyclic physical 
ductility. Also, estimations of cyclic deformations to calculate µc are an improvement with respect to 
estimations of non cyclic maximum lateral deformations to calculate µnc because these non cyclic 
deformations neglect the cyclic characteristic of dynamic response. 
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