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ABSTRACT 

 
During the last decade, a great deal of attention has been paid to nonlinear static procedures (NSP). 
These procedures have been used widely in performance based seismic design of structures; since it 
provides essential information on response parameters that cannot be obtained using conventional elastic 
methods. However NSP suffers from different drawbacks including restriction with a single - mode 
response and its inability to include higher mode order effects in the analysis. To overcome these 
drawbacks, some improved procedures have been recently proposed by several researchers. In order to 
account for higher modes effects, an optimum method of direct modal combinations for a 12 storey steel 
building is presented in this paper. The proposed method has been inspired by modal pushover analysis 
(MPA) proposed by Chopra but accounts for participation of each mode. The results show that the inter-
storey drift profiles from optimum combination has minimal error with drift profiles from nonlinear time 
history analysis (NTHA). The genetic algorithm (GA) is used for optimization of the modal combination and 
minimization of the error function. 
  

Introduction 

 
Referring to the philosophy of the seismic design and inelastic behaviour of structure at low performance 
levels such as life safety and collapse prevention, it is clear that the damageability of structures under 
earthquake is controlled by the inelastic deformation capacities of the structural elements. Therefore, 
changing the base of codes from force control to displacement control and more explicitly, design 
consideration to damage control has been widely recognized (see Fajfar 1997 and Priestley 2000). This 
aim can be achieved only by introducing some kind of nonlinear analysis into the seismic design 
methodology. Regarding the nature of seismic loads in the form of base acceleration, nonlinear time 
history analysis (NTHA) is the most rigorous procedure to compute seismic demands. Because of 
complexity of this method, during the last decade the nonlinear static procedure (NSP) so-called pushover 
analysis as a practical tool to estimate the inelastic response, has been developed (ATC, 1996, FEMA, 
1997-2000). 
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In the pushover analysis, a structural model that directly incorporates nonlinear material characteristics is 
subjected to monotonically increasing invariant lateral force pattern until a predetermined target 
displacement is reached. Define of the load pattern and target displacement are based on the assumption 
that the response of a multi-degree-of-freedom (MDOF) structure is directly related to the response of an 
equivalent single-degree-of-freedom(SDOF) system with a fundamental mode shape and that the mode 
shape remains unchanged, throughout the time-history, regardless of the level of deformation. While the 
invariant load pattern according to fundamental mode may be adequate for regular and low-rise structures 
whose response is effectively  dominated by fundamental mode (krawinkler,1998), It can misleading for 
irregular and high-rise building with significant higher mode contribution. 
 
The major drawback of NSP in its existing form (ATC, 1996, FEMA, 1997-2000) lies in the fact that it is 
basically restricted with a single-mode response, and it can’t account for the contributions of higher modes 

and changing of modes shape because of structural yielding. Recently to eliminate this drawback several 
method have been proposed that they can be categorized in two major classes: 
 
1. modal-adaptive pushover  
2. modal- combination pushover  
 
In modal-adaptive methods according to the vibration properties of the structure at every step the load 
pattern is changed e.g., (Gupta, 2000, Antoniou, 2002 and Aydinoglu, 2003). These adaptive load pattern 
estimate responses better than invariant load pattern but they may be complicated for engineering 
practices. While in the modal combination pushover methods the simplicity of the conventional methods is 
kept and the seismic responses are estimated by combining the results of some previously achieved 
pushover analysis. Each of the pushover analysis is conducted by using a mode shape as its load pattern 
e.g., (Moghadam 2002 and Chopra, 2002). In the approach proposed by Moghadam, pushover results 
combination, (PRC), the proposed combination rule is shown in Eq.1, 
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Where, 
R : final estimation of responses; 

Bi : mass participating factor of mode i ;  

Ri : value of response resulted from pushover analysis using mode shape i as load pattern.  

 
In the modal pushover analysis (MPA) proposed by Chopra in spite of PRC, the target displacement for 
every mode of pushover analysis is not the same and determined from NTHA of equivalent SDOF system. 
The responses of the pushover analysis are combined according to the square-root-of-sum-of-squares 
(SRSS), Eq.2, 
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Where, R and Ri  are the same terms as defined for Eq.1. The approximate MPA procedure estimates the 

floor displacements and storey drifts better than conventional pushover analysis. Nevertheless, the MPA 
procedure has error in comparison with NTHA.  
 
The main issue in this paper is to answer this question: can be estimated the seismic responses exactly 
by using another combination rules in the MPA procedure and how can be found this optimum 
combination rule? Therefore, a 12 storey moment resistant steel frame as a case study is investigated in 
this research program. The proposed combination is to add the participation of each mode response 
directly, in an algebraic fashion, without removing any sign. Participation coefficient of each mode for this 
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case study obtained by using genetic algorithm (GA) optimization method. While the inter-storey drift 
profiles from proposed combination has minimal error in comparison with drift profiles from NTHA.  

 
Proposed Procedure 

 
Since the goal of this procedure is to define an optimal combination for MPA relevant to the undertaken 
steel frame, all the established steps of MPA procedure except the SRSS combination step are included 
in the proposed method. The error between responses of NTHA and sum of factored responses resulted 
from each pushover analysis is defined as an error function that must be minimized and the quantity of 
each factors be determined. Every factor shows the participation of each mode and the GA method is 
used for minimization of error (objective) function. 
 
The procedure is implemented in a sequence of steps as fallow: 
  

1. Compute the natural frequencies, ωn and mode shapes, Øn, for linearly elastic vibration of the 

structure. 
2. For a selected number of first modes (4 modes), develop the base shear-roof displacement 

pushover curve, Vbn – Urn for lateral force distribution Sn =mØn, where m is the mass matrix of 

the structure. 
3. Idealize each pushover curve as a bilinear curve. 

4. Convert the idealized pushover curve to the force – displacement relation, Fsn/Ln – Dn, (Fig.4) for 

the “n
th
 mode” inelastic SDOF system by utilizing  
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In which, Mn
*
 = Ln Γn  is the effective modal mass , Ør n is the value of Øn at the roof level, 
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5. Compute the peak deformation of the n

th
 inelastic SDOF system through NTHA. The elastic 

period of vibration of the n
th
 system is:  
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6. Calculate the peak roof displacement associated with the n

th
 mode from  

 

 nr nnr n DΓu ∅=                                                                                                                     (6) 

 
7. From the pushover database (step 2), extract values of the desired responses Rn (floor 

displacements, storey drifts, etc.) at the peak roof displacement. 
8. Perform NTHA of the structure under the desired acceleration record (in this study El Centro 

1940) and determine the envelop of inter-storey drift profiles.  
9. Define the combination rule as:  
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 4321 dRcRbRaRR +++=                                                                                                    (7) 

Where, R is final (total) response, R1, R2, R3 and R4 is obtained at step 7 and a, b, c and d are 

participation factors of each mode that obtained from minimized objective function at step 12. 
10. Since inter-storey drift is important factor in damage of structure, so it is desired that the 

differences between drift resulted from NTHA and proposed combination rule is minimized and 
the error vector is defined as: 

 

 ( )4321 ∆+∆+∆+∆−∆=∆
vvvvvv

dcbaNTHAerror                                                                           (8) 

 

Where, NTHA∆
v

 is vector of storey drift profile (at every storey) resulted from NTHA and 

4321  and ,, ∆∆∆∆
vvvv

 is vector of storey drift profile (at every storey) extracted from each pushover 

analysis according with every mode.  
11. To minimize the error vector, all its components and sum of them must be minimized, so the 

objective function is defined as:  
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Where, derror i  is i
th
 component of the error drift storey vector, error∆

v
.  

12. Use GA optimization method to minimize the objective function defined at step 11 and obtain the 
optimum quantities of a, b, c and d.  

 
Genetic Algorithms (GAs) 

 
The GA is a stochastic global search method that mimics the metaphor of natural biological evolution. 
GAs operates on a population of potential solutions applying the principle of survival of the fittest to 
produce (hopefully) better and better approximations to a solution. At each generation, a new set of 
approximations is created by the process of selecting individuals according to their level of fitness in the 
problem domain and breeding them together using operators borrowed from natural genetics. This 
process leads to the evolution of populations of individuals that are better suited to their environment than 
the individuals that they were created from, just as in natural adaptation. Individuals, or current 
approximations, are encoded as strings, chromosomes, composed over some alphabet(s), so that the 
genotypes (chromosome values) are uniquely mapped onto the decision variable (phenotypic) domain. 
The most commonly used representation in GAs is the binary alphabet {0,1} although other 
representations can be used, e.g. ternary, integer, real-valued etc. 
  
Real-Coded Genetic Algorithms 

  
The use of real-valued genes in GAs is claimed by Wright (Wright, 1991) to offer a number of advantages 
in numerical function optimization over binary encodings. Efficiency of the GA is increased as there is no 
need to convert chromosomes to phenotypes before each function evaluation; less memory is required as 
efficient floating-point internal computer representations can be used directly; there is no loss in precision 
by discretisation to binary or other values; and there is greater freedom to use different genetic operators. 
The use of real-valued encodings is described in detail by Michalewicz (Michalewicz, 1992) and in the 
literature on Evolution Strategies. 
 
The Objective and Fitness Functions 

 
The objective function is used to provide a measure of how individuals have performed in the problem 
domain. In the case of a minimization problem, the fit individuals will have the lowest numerical value of 
the associated objective function. This raw measure of fitness is usually only used as an intermediate 
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stage in determining the relative performance of individuals in a GA. Another function, the fitness function, 
is normally used to transform the objective function value into a measure of relative fitness (De Jony, 
1975), thus: 

( ) ( )( )xfgxF =                                                                                                                   (10)  

 
Where, f is the objective function, g transforms the value of the objective function to a non-negative 

number and F is the resulting relative fitness. This mapping is always necessary when the objective 
function is to be minimized as the lower objective function values correspond to fitter individuals. In many 
cases, the fitness function value corresponds to the number of offspring that an individual can expect to 
produce in the next generation. A commonly used transformation is that of proportional fitness 
assignment. The individual fitness, F(xi), of each individual is computed as the individual’s raw 

performance, f(xi), relative to the whole population, i.e., 
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Where Nind is the population size and xi is the phenotypic value of individual i. whilst this fitness 

assignment ensures that each individual has a probability of reproducing according to its relative fitness, it 
fails to account for negative objective function values.  
 
Selection 
 
Selection is the process of determining the number of times, or trials, a particular individual is chosen for 
reproduction and, thus, the number of offspring that an individual will produce. The selection of individuals 
can be viewed as two separate processes: 
1. Determination of the number of trials an individual can expect to receive, and 
2. Conversion of the expected number of trials into a discrete number of offspring. 
Stochastic universal sampling (SUS) is used in this paper. It is a single-phase sampling algorithm with 
minimum spread and zero bias. Instead of the single selection pointer employed in roulette wheel 
methods, SUS uses N equally spaced pointers, where N is the number of selections required. The 
population is shuffled randomly and a single random number in the range [0 Sum/N] is generated, ptr. The 
N individuals are then chosen by generating the N pointers spaced by 1, [ptr, ptr+1, ..., ptr+N-1], and 

selecting the individuals whose fitnesses span the positions of the pointers. An individual is thus 
guaranteed to be selected a minimum of [et(i)] times and no more than [et(i)], thus achieving minimum 

spread. In addition, as individuals are selected entirely on their position in the population, SUS has zero 
bias. 
  
Crossover (Recombination) 
 
The basic operator for producing new chromosomes in the GA is that of crossover. Like its counterpart in 
nature, crossover produces new individuals that have some parts of both parent’s genetic material.  
Intermediate Recombination is used in this paper. Given a real-valued encoding of the chromosome 
structure, intermediate recombination is a method of producing new phenotypes around and between the 
values of the parent’s phenotypes (Muhlenbein, 1993). Offspring are produced according to the rule, 
 

 )( 1211 PPPO −+= α                                                                                                            (12) 

 
Where α is a scaling factor chosen uniformly at random over some interval, typically [-0.25, 1.25] and P1 

and P2 are the parent chromosomes. Each variable in the offspring is the result of combining the variables 

in the parents according to the above expression with a new α chosen for each pair of parent genes. In 
geometric terms, intermediate recombination is capable of producing new variables within a slightly larger 
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hypercube than that defined by the parents but constrained by the range of α. 
 
Mutation  

 
In order to maintain the variability of the population, a mutation should be performed in certain individuals. 
In GAs, mutation is randomly applied with low probability, typically in the range 0.001 and 0.01, and 
modifies elements in the chromosomes (Goldberg, 1989). 
With non-binary representations, mutation is achieved by either perturbing the gene values or random 
selection of new values within the allowed range. Wright (1991) and Janikow et al (Janikow, 1991). 
demonstrate how real-coded GAs may take advantage of higher mutation rates than binary-coded GAs, 
increasing the level of possible exploration of the search space without adversely affecting the 
convergence characteristics. Many variations on the mutation operator have been proposed. For example, 
biasing the mutation towards individuals with lower fitness values to increase the exploration in the search 
without losing information from the fitter individuals or parameterising the mutation such that the mutation 
rate decreases with the population convergence (Fogarty,1989). Mühlenbein (Mühlenbein, 1993) has 
introduced a mutation operator for the real-coded GA that uses a nonlinear term for the distribution of the 
range of mutation applied to gene values. It is claimed that by biasing mutation towards smaller changes 
in gene values, mutation can be used in conjunction with recombination as a foreground search process. 
This method is used in this paper.  
 

Case Study 

 
Investigated structure is a 12 storey structure presented in (Kalkan, 2004). It is a 12 storey moment 
resisting frame that conforms to the requirements of the UBC (1997) provisions. The building designs are 
based on a configuration presented in the SEAOC seismic Design Manual (SEAOC, 2000). The building’s 
lateral force resisting system is composed of steel perimeter moment resisting frames (MRF). The floor-
plan and elevation view of the investigated frame are illustrated in Fig.1. Masses assigned for this frame at 
the storey floors and roof level are 550 and 510 tons, respectively. The yield strength of steel is assumed 
to be Fy = 345 Mpa (50 Ksi) for all structural members. 

 
 
 
 
 
 
 
 
 
  
 
  
 
 

         (b)Plan view  
 
 
 
 
 
 
 
 
 

Figure 1. Structural details of case study (units in meters). 
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Comparison and Analysis of the Results 

 
The proposed procedure was implemented for the 12 storey steel frame subjected to El Centro 1940 
ground acceleration record (PGA= 0.348g, at T=2.12 sec) and obtained the optimum combination of 
modes (OCM), the nonlinear analysis were carried out using DRAIN-2DX computer program (Prakash, 
1993). The properties and shape of four first modes is illustrated in Table 1 and Fig. 2, respectively. The 
base shear-roof displacement relations, Vbn – Urn  and Fsn/Ln – Dn resulted from each pushover analysis 

using Sn =mØn as load pattern are presented in Figs. 3, 4 and Table 2. The maximum displacement of the 

equivalent SDOF system subjected to El Centro ground motion, Dn-NTHA, and its associated maximum roof 

displacement, Urn-NTHA, are also shown in Table 2. In the second mode the value of Un-NTHA is less than 

Dny, which means the equivalent SDOF system associated with these modes is not yielded. 

 
Total responses profile of pushover analysis according to MPA procedure, PRC procedure and the peak 
responses resulted from NTHA and NSP with single mode (1

th
 mode) are illustrated in Fig 6. (Note: in 

PRC method in spite of MPA method, all models are pushed until the same displacement, Ur-NTHA is 

achieved while in this study, because of instability of the model in mode 4 when pushed until Ur-NTHA = 0.41 

meter, only first three modes are included in the combination process). 
 

               Table 1. Properties of  the first four modes. 
 

Figure 2. The first four mode shapes. 
 

 

                  Figure 3. Modal pushover curves.                        Figure 4. Equivalent  SDOF pushover curves. 
 

Table 2. Properties of equivalent nonlinear SDOF systems 
 

Mode V
bny

 U
rny

 F
sny
/L

n
 D

ny
  D

n-NTHA
  U

rn-NTHA
 

1 578192.80 0.46 1.16 0.33 0.28 0.39 

2 629604.46 0.15 6.82 0.25 0.27 0.16 

3 539795.10 0.07 16.73 0.20 0.13 16.73 

4 527634.69 0.04 30.78 0.17 0.14 0.03 

 Mode 1 Mode 2 Mode 3 Mode 4 

nω  1.89 5.25 9.10 13.28 

nL  355595.11 -151523.41 95089.52 -75634.70 

nΓ  1.40 -0.61 0.34 -0.23 
*

nM  498055.64 92374.26 32255.65 17140.85 

nB  0.74 0.14 0.05 0.03 
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To determine the participation of each mode in optimum combination method (OCM), the GA procedure is 
employed. The factor of each mode (a, b, c and d) are chosen as variable parameters while their upper 
and lower bound values are [-1,1]. The parameters of GA to be used in this study are taken as follows: 
population size = 50; number of generation = 500 and mutation rate = 0.05. After performing the GA it is 
found that the optimum value of factors are a =0.6651, b=0.3267, c=0.580 and d=0.4023.The evolving 
best fitness generation can be seen in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Evolving best fitness generation. 
 
Total responses of pushover analysis according to OCM with obtained factors from GA procedure are also 
illustrated in Fig.6.  
 

 
Figure 6. Comparison of drift and displacement profiles from different method. 

 
To compare the accuracy of different methods, an error index is defined as presented by (Lopez, 2004) 
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Where di-NTHA is the peak response of drift at a given level i from the NTHA, di-P is the corresponding drift 

from the pushover analysis and n is the number of stories. Whatever the error index is close to zero, the 
pushover response approaches the NTHA response and the error index is calculated for different 
methods as presented in Table 3. 
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Table 3. Value of Error Index (%) for different methods. 
 

Methods OCM MPA PRC Mode 1 

Error Index (%) 3.115 6.650 7.343 9.519 

 
Conclusions 

 
In this study, it is shown that an optimum combination rule of pushover analysis, using Sn =mØn as a load 

pattern, could be found while it estimates the seismic responses satisfactorily with minimum error index. It 
is expected that by using this procedure for different groups of structures, the participation of each mode 
for every group of structures can be defined statistically. 
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