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ABSTRACT 

 

Hollow core concrete bridge piers are traditionally believed to be vulnerable to seismic action. However, 
the seismic vulnerability of such piers has not been investigated fully. In this paper, an analytical model to 
assess seismic vulnerability of hollow core concrete bridge pier is developed. The model is validated with 
available experimental results. Code recommendations for hollow core bridge piers are evaluated. It is 
shown that confinement reinforcement requirements in the codes are sometimes highly conservative and 
sometimes non-conservative. However, the recently developed confinement reinforcement equations for 
solid bridge piers at Sherbrooke University can be applied for economic and safe design. It is 
demonstrated that hollow core bridge piers are not as vulnerable as it is traditionally believed. Such piers 
can attain expected ductility, if designed properly. 

   

Introduction 

 
Bridges often rely solely on the capacity of the piers to sustain large displacement without collapsing. 
Failure of bridge piers often causes collapse or failure of bridge span, as it is evident from several major 
earthquakes. Hence, bridge piers are usually designed as the first structural element to dissipate seismic 
energy well beyond their elastic limit. 
 
Hollow core piers are often used in the construction of long-span balanced cantilever bridges, cable-
stayed bridges, and bridges crossing deep valleys where tall piers are required. Compared to solid piers, 
hollow core piers have the advantage of having significant reduction in the volume of the material, large 
reduction of dead load, and high bending and torsional stiffness. Despite its wide use, research on the 
seismic behaviour of such piers is limited. Even the most modern codes of practice do not recognize 
specific problems associated with hollow piers, probably as the consequence of lack of knowledge (Calvi 
et al., 2005). However, these types of piers are commonly considered to be vulnerable to seismic action.  
 
The aim of this paper is to present an analytical tool to accurately model the seismic behaviour of hollow 
core concrete bridge piers. The predictions on real piers are compared with experimental results. Code 
recommendations for hollow core bridge piers are evaluated. Finally, the vulnerability of hollow core bridge 
piers is investigated by re-designing piers of an existing bridge and evaluating their seismic vulnerability. 
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Analytical Model 

 
Constitutive Laws of Materials 
 
Reinforced concrete is a highly nonlinear material. Realistic constitutive law of reinforced concrete is 
complex as the nonlinearities arising from concrete and the reinforcing bars should be appropriately 
combined to accurately describe the experimentally observed behaviour of reinforced concrete elements. 
The nonlinear material model of reinforced concrete consists of constitutive laws of concrete and 
reinforcing bars. 
 
Stress-Strain Relationship of Concrete 
 
An accurate model of confined concrete must be validated in terms of concrete strength, transverse 
reinforcement yield strength, column geometry, or load conditions. The model should be based on a 
rational approach to the confinement phenomenon rather than on multicriteria statistical analyses. 
Legeron and Paultre (2003) uniaxial confined concrete model has been chosen as the constitutive law of 
concrete for the analytical modelling of hollow core bridge pier. The model reflects the various conditions 
described above and is validated with large number of experimental results. The model is considered 
most suitable compared to other contemporary models (Sharma et al., 2005).  In the model, the behaviour 
of confined concrete is related to the effective confinement index I’e (I’e=fle/f’c, where fle is the confinement 
pressure, and f’c is the compressive strength of concrete), which takes into account the amount of 
transverse confinement reinforcement, the spatial distribution of the transverse and longitudinal 
reinforcement, the concrete strength, and the transverse reinforcement yield strength.  
 
Stress-Strain Relationship of Longitudinal Bars 

 
An accurate model of a stress-strain relationship of steel bars must simulate the following characteristics: 
(i) elastic, yielding and strain hardening branches in the first excursion, (ii) compression behaviour 
including buckling of bars in compression, (iii) cyclic behaviour, and (iv) low cycle fatigue and premature 
rupture of bars in tension due to cyclic loading and previous buckling in compression.  
 
If the buckling of the reinforcing bar is not included in the modelling, behaviour of the pier at large inelastic 
deformation may be overpredicted. Gomes and Appleton (1997) model has been chosen since it is simple 
and is proven to predict bucking of bars quite well. The model takes into account the effect of inelastic 
buckling of longitudinal reinforcing bars in a simplified way based on the plastic mechanism of buckled 
bar. When a bar is subjected to cyclic load, its maximum strength is less than the maximum strength 
observed in monotonic tensile tests. Ultimate limit strain of the bar has been considered according to the 
simplified method proposed by Legeron (1998), based on tangent modulus theory. The apparent tensile 
strain at fracture generally comprises between 0.03 and 0.06 and is related to the spacing of transverse 
bars. 
 
Modelling Sectional Behaviour 

 
The complete moment curvature response of the hollow core section is computed with the MNPHI 
computer program (Paultre, 2001) with a layer by layer analysis incorporating the constitutive laws of 
concrete and reinforcing bars, as described above, assuming that plane section before bending remains 
plane after bending. 
 
Member Force Displacement Relationship 

 
Having established the moment-curvature relationship of the cross-section, flexural force displacement at 
the top of the pier can be calculated based on the moment area method with the moment diagram of the 
pier. The pier is subjected to a linearly varying bending moment between the top of the cantilever and the 
base. The variation of curvature along the column height is determined from moment curvature analysis, 
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as discussed in the previous paragraph. It is assumed that average curvature with the assumed plastic 
hinge length is constant.  A computer algorithm has been developed to calculate the flexural force-
displacement behaviour of pier taking into account bar slippage and shear deformation (Legeron, 1998).  
 
In most cases, in practice, piers fail in flexure and calculation as described above is sufficient. However, 
piers constructed before the adoption of modern codes of practices may fail in Shear. Shear capacity of 
the bridge pier is calculated based on UCSD approach proposed by Priestley et al. (1994) for normal 
strength concrete, and USC approach proposed by Xiao et al. (1998) for high strength concrete piers. 
 

Comparison with Experimental Results 

 
Seismic performance of hollow core bridge piers has been investigated experimentally by several 
researchers (Mo and Nien, 2002; Pinto et al., 2002; and Calvi et al., 2005). Experimental results of Mo and 
Nien (2002), Calvi et al. (2005) and Pinto et al. (2002) have been compared with analytical results. 
Excellent agreement has been obtained between the analytical results and experimental investigations. 
Due to the space limitations, analytical predictions for piers HI-1-b of Mo and Nien (2002), pier A70 of 
Pinto et al. (2002), and pier S250 of Calvi et al. (2005) have been reported herein. Full details of all the 
comparisons can be found in Vivier (2006). 
 
Mo and Nien (2002) investigated the seismic performance of hollow high strength concrete bridge piers 
tested under constant axial load and a cyclically reversed horizontal load. Pier HI-1-b failed in shear. It can 
be seen that analytical model can predict the shear behaviour of the pier when shear capacity is 
calculated based on the phenomenological shear model (USC model) proposed by Xiao et al (1998) (Fig. 
1a).  
 
Pinto et al. (2002) presented the results of cyclic tests on two large scale models of Wrath Bridge piers 
with rectangular hollow cross-section. Pier A70 is expected to fail in flexure as it is over designed for 
shear, which is also apparent from the analytical results (Fig. 1b).  
 
Calvi (2005) reported cyclic response of 11 pier specimens. All the specimens were assumed to be 1:4 
scaled with aspect ratios equal to 2 or 3. Pier S250 is made with normal strength concrete and is designed 
to fail in shear. It can be seen that analytical model can well predict the shear behaviour of the pier when 
shear capacity is calculated based on the phenomenological shear model (UCSD model) by Priestley et 
al. (1994) (Fig. 1c). 
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Figure 1.    Experimental results compared with analytical predictions 

 
It is evident from the comparison with the experimental result that the developed analytical method 
predicts the load-displacement behaviour of hollow core pier with reasonable accuracy. It has been 
observed that the proposed model can accurately predict the failure modes of the hollow core piers. The 
model has also been observed to accurately predict the behaviour as well as the performance limit states 
of solid piers (Sheikh et al., 2007).  

 
Evaluation of Code Recommendations 

 
Thickness of the Wall 
 
Design codes recommend to confine hollow core piers as if they were solid (the hole is considered as if 
filled with concrete). This is counterintuitive and results in very high confinement demand. Parametric 
numerical study has been carried out to investigate the effect of wall thickness on the ductility capacity of 
hollow core bridge piers for different level of confinement. It can be observed that the ratio of concrete 
area to the overall cross-sectional area (Ac/Ag) has little influence on the ductility capacity of the bridge 
piers for all cases (Fig. 2a), except for very low longitudinal reinforcement (0.4%) with very low axial load 
ratio (n=0.087) (Fig. 2b). Even in such a case, the ductility capacity (µφ) of the piers remains nearly 
constant when the ratio of wall thickness (Ac/Ag) is more than 0.3, which is normally the case in most 
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hollow core bridge piers.  
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Figure 2.    Influence of wall thickness. 

 
In all cases except in the cases of low longitudinal reinforcement and low axial load level with Ac/Ag = 0.2, 
the neutral axis stays in the concrete and does not pass through the hollow core. Hence, the concrete at 
the inside face of the tube wall is in tension. As a result, the hollow core does not have significant 
influence on the ductility capacity of the bridge pier and hence does not need to be confined.  This finding 
is in contrast with the guidelines of the codes. Code recommended confinement reinforcement 
requirements have further been investigated in the following subsection. 
 
Confinement Reinforcement 

 
Confinement reinforcement requirements specified in American code (AASHTO, 2004) and Canadian 
code (CAN/CSA-S6-06, 2006) provide uniform confinement regardless of ductility demand. When 
concrete strength is increased, the amount of confinement reinforcement has to be increased to reach a 
constant level of ductility for columns subjected to same level of axial load. This high amount of lateral 
reinforcement results in congestion of reinforcement cages and creates concreting problems, specifically 
in hollow core concrete bridge piers where it acts as a limiting factor for thickness of the wall. Recent 
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research investigation at Sherbooke University on confinement reinforcement for bridge piers has resulted 
in new confinement equations (Légeron et al., 2006): 
 
                  (circular columns: moderate ductility)                                                     (1) 
          

  
                 (circular columns: ductile)                                                                        (2) 
 
    
              (rectangular columns: moderate ductility)                                                (3) 
    
 
             (rectangular columns: ductile)                                                                  (4) 
 
where ρs is the ratio of spiral reinforcement at plastic hinge region; Ash is the total cross-sectional area of 

the transverse reinforcement at plastic hinge region; f’c is the specified compressive strength of concrete; 

fy is the yield strength of reinforcing bar; n is the axial load ratio; s is the vertical spacing of the transverse 

reinforcement; and c is dimension of the tied pier. 
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Figure 3.    Comparison of confinement reinforcement requirements. 
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The proposed equations provide more economic and safer design and are considered as a significant 
improvement over the current design code provisions and expected to be included in the future Canadian 
highway bridge design code. The proposed equations take into account of the levels of ductility (moderate 
ductility level and fully ductile level) of the piers. Curvature ductility for moderate ductility level and fully 
ductile level has been considered as 10 and 16, respectively. 
 
Confinement reinforcement requirements of American and Canadian design codes are compared with 
available ductility capacity of the piers. Theoretically, there should be some relationship between 
compliance to code requirement and available ductility. As demonstrated in Fig. 3(a,b), no real tendency 
has been observed in confinement reinforcement requirements specified in the codes. This means that 
some piers designed with the codes behave in a ductile manner that is well beyond what is necessary 
(confinement reinforcement could be cut by 2 or even 3 times), and some other piers, designed with the 
same procedure, do not achieve the required ductility. Hence, design codes do not provide consistent 
confinement reinforcement for hollow core piers. However, newly proposed confinement equations better 
represent the actual requirements (Fig. 3c). It can be observed that about 75% of the confinement 
reinforcement is utilized for curvature ductility demand of 16. Hence the newly proposed confinement 
reinforcement equations provide economic and safe results even for hollow core bridge piers. It should be 
noted that in few cases where neutral axis passes through the hollow core, the newly proposed 
confinement equation should be used with caution.  

 
Example Wrath Bridge 

 
The suitability of proposed equations has been investigated by redesigning piers of an existing bridge, the 
Wrath Bridge in Austria, and evaluating its behaviour. It is composed of two identical viaducts and is 
located on Motorway A23 (Fig. 4). Only one of the viaducts has been studied.  A complete numerical 
analysis of the viaduct can be found in Legeron (2000). The piers are of rectangular cross-section having 
external dimensions of 6.8 x 2.5 m with a hollow core of 5.8 x 1.9 m. The viaduct is constituted of 5 spans 
of 67 m and two lateral spans of 62 m. The heights of the piers vary from 17.8 m to 40.0 m, and the 
aspect ratios vary from 2.06 to 5.9. 
 
Design and Modelling 

 
Seismic loads are determined according to the recommendations of Canadian bridge design code 
(CAN/CSA-S6-06, 2006), considering the bridge as ‘Other Bridge’ (Importance factor I=1.0). Confinement 
reinforcements are designed according to the recommendation of Legeron et al. (2006). Cross-sectional 
dimensions of the piers have been kept the same as the original bridge. The piers are redesigned for 
zonal acceleration ratio (A) of 0.4, soil profile type III (site coefficient S=1.5), and response modification 
factor (R) of 3.0. A complete calculation can be found in Vivier (2006). 
 
Modelling of the bridge piers has been carried out according to the methodology developed in an earlier 
section. Effectiveness of the distribution of confinement reinforcement is taken into account through the 
calculation of effective confinement index (I’e). P-∆ effects have also been taken into consideration. The 
pushover analysis is conducted in order to find out the failure mechanisms and to compute the 
vulnerability functions with an in-house computer program (RITA) developed at Sherbrooke University.  
Pier behaviour is assumed to be tri-linear with the three points defining the curve being cracking, yielding 
and rupture. The response of the bridge under the unit peak ground acceleration is scaled from 0 to 
rupture for this purpose. For each of the ground accelerations, the structure is considered as a single-
degree-of-freedom system with generalized coordinates. The effective structural characteristics are 
calculated from each element secant characteristics: (i) the generalized coordinate is computed from the 
deformed shape of the deck, which is determined based on relative pier stiffness, (ii) the displacement for 
each pier is computed from the assumed deformed shape of the deck, (iii) the secant stiffness of each 
pier is represented by tri-linear curve, (iv) the equivalent viscous damping is evaluated from hysteretic 
damping, (v) secant characteristics of the pier is updated for convergence (v) the effective characteristics 
(stiffness and damping) of the piers are computed, (vi) period of the bridge is evaluated from the effective 
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bridge properties, (vii) generalized acceleration is computed, (viii) peak ground acceleration is 
incremented up to failure of the pier. Vulnerability functions of the piers are represented as a function of 
∆/∆u, where ∆u is the ultimate displacement. 

 
 

Figure 4.    Wrath Bridge in Austria: elevation and pier cross section 
 
Results 
 
Curvature ductility (µφ) of the piers has been determined to be around 21 and the displacement ductility 
(µ∆) of the piers to be around 6.0. This confirms the suitability of the newly proposed equation for the 
design of hollow core bridge piers with predictable ductility capacity. Vulnerability functions of the bridge 
piers are presented in Fig. 5. It can be observed that although the bridge piers are designed for the 
acceleration coefficient of 4.0 (i.e. peak ground acceleration= 4.0 m/s/s), the ∆/∆u value ranges from 0.12 
to 0.35. This may be due to the low R used for the design of the piers. It should be mentioned that 
Canadian code (CAN/CSA-S6-06, 2006) does not treat hollow core bridge piers separately from solid 
piers: it specifies similar R factor for both solid piers and hollow core piers. Some additional calculations 
show that response modification factors up to 5 could be used for hollow core piers.  It is evident from Fig. 
5 that hollow core bridge piers are not as vulnerable as it is believed traditionally. Moreover, if properly 
designed, it can achieve adequate ductility to sustain anticipated displacement demand imposed by 
design earthquake events. 
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Figure 5.    Vulnerability of Wrath bridge piers. 

 
Conclusions 
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An analytical tool for seismic vulnerability assessment of hollow core bridge piers has been developed. 
The predictions using this analytical model have been compared with available experimental results. Both 
flexural and shear behaviour of the piers are evaluated. An excellent agreement between the results of 
analytical model and results of experimental investigations has been observed. 
 
Ratio of concrete area to the overall cross sectional area (Ac/Ag) has little influence on the ductility capacity 
of bridge piers. In all the cases, the neutral axis stays in the concrete and never passed through the hollow 
core. Hence, hollow core does not need to be confined. This investigation is in contrast with the 
specification of the design codes, which prescribes to confine the hollow core. 
 
Confinement reinforcement requirement in American (AASHTO, 2004) and Canadian (CAN/CSA-S6-06, 
2006) codes has been investigated. It has been concluded that the codes are sometimes overly 
conservative. However, newly proposed confinement equation for bridge piers can well predict the ductility 
capacity of the hollow core bridge pier and may result in economic and safe design.  
 
Wrath Bridge in Austria has been redesigned according to Canadian code (CAN/CSA-S6-06, 2006) but 
confinement reinforcement has been considered according to the newly proposed confinement equations 
for ductile level (Légeron et al., 2006). The bridge is predicted to withstand at least 150% of the design 
peak ground acceleration, which is satisfactory. It has been demonstrated that hollow core bridge pier is 
not as vulnerable as it is believed traditionally. If properly designed, hollow core bridge pier can achieve 
adequate ductility to sustain anticipated displacement demand imposed by design earthquake events. 
However, this conclusion is based on the result of a single bridge. Research on other bridges with hollow 
core piers is a part of an ongoing research at Sherbrooke University. 
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