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ABSTRACT 

 

System identification plays an important role in health and condition monitoring of buildings. To identify 
damage in a structure, the frequencies and other modal parameters are often evaluated from dynamic 
measurements, and then an inference about the damage is made. The modal parameters can be 
extracted from the response of the structure to free and forced vibrations. The identification of frequencies 
and damping of a torsionally coupled system is difficult since the structural system possess closely-
spaced frequencies. In this paper, three mode identification methods, Complex Exponential Algorithm, 
Ibrahim Time Domain Method, and Eigen Realization Algorithm are modified to use data obtained only 
from the recorded responses. These algorithms are evaluated for their effectiveness in estimating the 
modal properties of torsionally coupled buildings subjected to base excitations. A new mode shapes 
interpolation method to extract the mode shapes of a torsionally coupled system from modal data of only 
top and lowest floor has been presented. The limitations of the modified identification methods are 
examined for an example multi-storey torsionally coupled building. 

  

Introduction 

 
Determination of dynamic properties of full-scale structures is a subject of increasing importance to 
researchers and engineers. The design and analysis of structures to withstand seismic loads, strong 
winds, explosions, and other types of dynamic forces require an understanding of dynamic characteristics 
of the structure. Another major concern is structural health monitoring and damage detection. The 
occurrence of damaging earthquakes poses a problem of identifying damages in the structures. Many 
times the damage due to minute cracks remains undetected. Prolonging the services of such a structure 
without retrofitting will reduce its capacity to sustain future major events. The structural damage results in 
permanent changes in the structural stiffness, distribution of stiffness, and relevant material properties. 
These changes may be detected by monitoring the dynamic behavior of the structure.  
 
The determination of structure dynamic characteristics, i.e., system identification, is useful for the following 
reasons: (1) To determine the dynamic properties of structures which are difficult or impossible to model 
analytically; (2) To identify damage and possible changes in the dynamic behavior of structures; (3) To 
detect the damage to structures without disturbing the health of the structure, and to monitor the structural 
safety; (4) For condition assessment of the important structures after major events like a large 
earthquake, damaging tsunami, explosions, etc. and (5) To update numerical models of the structure by 
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adjusting the modal parameters to experimentally verified results. 
 
There is limited published literature on the identification of system parameters of torsionally coupled 
buildings (Kozin and Natke 1986, Uneg et al. 2000). Many researchers have proposed parameter 
extraction for planar frame structures (Mau and Aruna 1994, Wang and Haldar 1994) or have identified 
two translational and one torsional modal parameter for building structures separately (Kadakal and 
Yuzugullu 1996). However, all buildings with nominally symmetric plans are asymmetric to some degree 
and undergo lateral as well as torsional vibrations simultaneously. As a result of coupled lateral-torsional 
motions, the lateral forces experienced by various resisting elements (such as frames and shear walls) 
differ from those experienced by the same elements if the building is truly symmetrical. Ignoring the 
torsional vibration may result in underestimation of the structural responses (Hejal and Chopra 1989). 
 
Traditional system identification techniques require the full measurement of input excitation and all its 
corresponding responses (Kozin and Natke 1986). However, a real structure usually possesses a large 
number of degrees of freedom making it impossible to acquire full measurements of all degrees of 
freedom. Thus, system identification based on response measurements at a few degrees of freedom 
becomes necessary from a practical consideration. There are several different approaches proposed for 
extracting modal parameters from limited response measurements using general input (base excitation) 
and output (floor responses) methods. The Eigen Realization Algorithm (ERA) and Observer/Kalman Filter 
Identification (OKID) approach have been used to identify the modal parameter from time histories of the 
structural response (Lus et al. 1999). There have been comparative studies to highlight the difference and 
similarities in current modal identification algorithms, viz. Least-Squares Complex Exponential (LSCE), 
Poly Reference time domain (PTD), Ibrahim time domain (ITD), and Eigen-system Realization Algorithm 
(ERA), Rational Fraction Polynomial (RFP), Poly Reference Frequency Domain (PFD), and Complex 
Mode Indication Function (CMIF) methods (Allemang and Brown 1998). In many of these studies the 
modal parameters are extracted by modeling the building as a linear system with only one or two 
translational DOF per floor, and not having closely spaced frequencies. There is limited literature available 
on effectiveness of above methods to extract modal parameters of a system having closely spaced 
frequencies such as a torsionally coupled building. In this paper, time domain curve fitting techniques has 
been applied to extract the modal parameters of torsionally coupled building from only recorded 
responses. 
 

Mode Identification Methods 

 
The identification of frequencies and damping of a torsionally coupled system is difficult since the 
torsionally coupled structural system possess closely-spaced frequencies. In this investigation the time 
domain mode identification methods viz., Complex Exponential Algorithm (Maia 1988), Ibrahim Time 
Domain Method (Ibrahim and Mikulcik 1973) and Eigen Realization Algorithm (Juang and Pappa 1985) 
are evaluated for their effectiveness in estimating the modal properties of torsionally coupled buildings 
subjected to base excitations. These methods have been implemented in the Natural Excitation 
Technique (NExT) sense. A direct similarity has been established between the Cross Correlation and 
Impulse Response Functions, and also between Cross Power Spectra and Frequency Response Function 
of the excited structure (James 1995). Modal parameters have been extracted from Cross Correlation 
Functions (CCor) or Cross Power Spectral Density (CPSD) of the building treating it as an input-output 
system. 
 
Complex Exponential Method  
 
The Complex Exponential Method (CEM) parameter extraction process involves forming the polynomial 

equations from the CCor data and finding the roots of the polynomial to get the natural frequencies and 

damping ratios. The accuracy of the parameters is verified by synthesizing the CPSD from the extracted 

natural frequencies and residues and comparing it with the original CCor and CPSD. The CEM in original 

form developed to use frequency response function (FRF), which can be written in terms of receptance 

jkH  (displacement at point j due to a force at point k) for a linear, viscously damped system with N degree 
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of freedom (DOF) can be given by the following expression (Maia 1988). In the present study cross 

spectral density function is used instead of FRF, as we have only responses available for parameter 

extraction. 
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where, 
r

ω  is the natural frequency, 
r

ξ  is the damping ratio, r jkA is the residue corresponding to each 

mode r, and the asterix (*) denotes complex conjugate quantity. The impulse response function/cross 

correlation function can be written as  
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In Eq. 2, ω ξ ω′= − +r r r rs i  and ( )ω ω ξ′ = −
21r r r . The CCor data points shifted one time interval each is 

loaded in the Hankel matrix form (Inglesias 2000) given by  
 

[ ] { } { }
Χ Χ

′=

1 1XM n n M

hh ββββ   (3) 

 

where βi  is the auto regressive coefficient. If L is the number of data points in the CCor function, then 

=M L 2 , n = 1+ Order of the polynomial equation to be formed, and hi are the CCor data point. In Eq. 3, 

[ ]h  and { }′h  are known and { }β is calculated in the least-square sense using pseudo-inverse technique. 

After calculating{ }β , it is used to calculate the roots 
r

V  of the polynomial equation given below. 

 

β β β β β+ + + + + =L
2 3

0 1 2 3 0L
r r r L rV V V V  (4) 

 
The natural frequencies are calculated using the relationship in Eq. 2,  
 

r r rR = (V )=s ∆tln ,      πr rf = R 2 ∆t ,        and          ( )ξ
2

r r r= 1 1+ (R ) (R )Im Re   (5) 

 

where rf  and ξr  are the frequency in Hz and the damping ratio, respectively. 

 
Ibrahim Time Domain Method 

 
This method uses free decay of acceleration responses to extract frequency and damping ratios (Ibrahim 
and Mikulcik 1973). The CCor is used to extract modal parameters since they are inverse FFTs of CPSDs 
that already have been averaged, reducing the noise (Maia 1988). The parameter extraction involves 
forming the square matrix after manipulating CCor data sets and solving the standard eigenvalue problem 
to get the natural frequencies and damping ratios. During free vibration the system is assumed to be 
described by the following equation 
 

[ ]{ } [ ]{ } [ ]{ } 0&& &M x + C x + K x =    (6) 

 

where [ ]M , [ ]C  and [ ]K  are the mass, damping and stiffness matrices of the structure, respectively, and 
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{ }x  is the displacement vector. The dots denote derivative with respect to time. The solution to this 

equation can be determined by standard techniques to yield the natural frequencies and damping ratios. 
 
The responses of an N-degree of freedom structure at i-th DOF and at time-step 

j
t  can be expressed by 

modal combination as: 

 

=

= ∑
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( ) r j
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s t
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where irp  is the i-th component of the eigenvector. In the present study, the measured CCor data are 

arranged in a Hankel matrix form. The data sets are arranged in two matrices each having shift of one 
time interval, ∆t, as given below, so as to obtain the system matrices in double least square sense 
(Ibrahim and Mikulcik 1988). 
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The square matrix is formed using these two data matrices in the double least square sense as follows. 
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After obtaining the square matrix s  A in Eq. 9, it is solved as a standard eigenvalue problem, which gives 

m pairs of eigenvalue and eigenvectors. The standard relationship between the eigenvalue β γ+ ri , and 

the eigenvalues of Eq. 6, are used to calculate the natural frequencies and damping ratios as 
 

β γ
∆

+ = =rs t
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2
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Eigen-Realization Algorithm (ERA) 

 
The first step in ERA for modal parameter extraction is to formulate Hankel matrix H, from the discrete 

CCor data h(t), treating it as free response, where, h(t) is the cross correlation data obtained using &&
iX ( )t  

and &&
jX ( )t  at time t, and ( )t&&

iX  and ( )t&&
jX  are the i-th and  j-th floor acceleration response (time output 

signal) at time t, respectively (Juang and Pappa 1985). A singular value decomposition of (0)H  is 

performed yielding to give 

 

(0) TH = RΨS   (12) 

 

where Ψ is a diagonal matrix with the singular values in the diagonal, and the matrices R and S are 

square and unitary. The Henkel matrix can be used to obtain A, B and C, i.e. the system matrix, input 

matrix, and output matrix, respectively, of a state-space realization of the system. The natural frequencies 
can be obtained directly from the system matrix A, mode shapes are obtained by multiplying the 

eigenvectors of A with the output matrix C. 
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Torsionally Coupled Multistory Building 

 
Many multi-story buildings have the following features: (1) All floors of the building have the same 
geometry in plan and same location for columns and shear walls, and (2) The ratio of the story stiffness in 
the x and y directions is same for all stories. With reference to the building idealization consisting of rigid 

floors supported on massless axially inextensible columns and walls, the special class of torsionally 
coupled buildings as shown in Fig. 1 is assumed to satisfy the following: (1) The principal axes of 
resistance for all the stories are identically oriented along the x and y axes shown, (2) The center of mass 

of all floors lie on one vertical axis, (3) The center of resistance of the stories lie on another vertical axis, 

i.e., static eccentricities xe  and ye  are the same for all stories, (4) All floors have same radius of gyration, 

r, about the vertical axis through the centre of mass, and (5) Ratios of the three stiffness quantities, i.e. 

translational stiffness in x and y directions, Kxt and Kyt , and torsional stiffness 
θ tK  are same for all the 

stories. The stiffness ratios can be expressed as 
 

Figure 1.      Torsionally coupled multi-story building. 
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For the above class of torsionally coupled N-stories buildings, each floor has three degrees-of-freedom: x 

and y displacements of the centre of mass relative to the base, and rotation about the vertical axis. For 

floor i, these are denoted by ixu , iyu and iu
θ

, respectively. The undamped equations of motion for the 

building subjected to base excitations && ( )gxu t  and && ( )gyu t , assumed to be the same at all points of the 

foundation, may be expressed as 
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In Eq. 14 the displacements vectors and mass sub-matrix are 
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in which im = lumped mass at floor i. All elements of column vector 1  are unity and the stiffness sub-

matrices are given by 
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The stiffness matrices may be expressed in terms of stiffness ratio as 
 

= βK Kt t x  and y y x= βK K    (17) 

 
Using Eqs. 14 to 17, the building’s natural frequencies and mode shapes are obtained by solving the 
eigenvalue problem of order 3N, where N is the number of floors in the torsionally coupled multi-story 

building. Because of the existence of eccentricity, the vibration modes may be closely-spaced, leading to 
the difficulty in identification of modal parameter. 
 

Mode Shape Interpolation and Sensor Placement 

 
The mode shape interpolation scheme for general torsionally coupled buildings has been proposed by 

(Uneg 2000), which relys on the shear mode shape ordinates at unmeasured floor levels. In the present 

investigation, the shear mode shape ordinates are estimated at unmeasured floor levels of an uncoupled 

planar system and later mode shapes of torsional building are derived based on the methodology 

proposed by Kan and Chopra (1997). Using the known data for the first and N-th floor corresponding to i-

th mode, a set of − × −( 2) ( 2)N N  matrix equations may be obtained for the i-th mode (Chakraverty 2005, 

Yuan et al. 1998). The iterative procedure to determine the eigen-properties can be used to evaluate the 

first six mode shapes of a torsionally coupled building using the procedure explained below. 

 
Mode Shape Estimation for a Torsionally Coupled Building 

 
The mode shapes of a torsionally coupled building are estimated after extracting the mode shape of its 
corresponding uncoupled shear model. Hence, the first two frequencies of shear building have to be 
calculated from the identified natural frequencies of the torsionally coupled building (Ewins 1984, and 
Wenzel and Pichler 2006). The ratio of translational frequency of torsionally coupled building and its 
corresponding frequency of the uncoupled shear building, called Translational Frequency Ratio (TFR), can 

be expressed as  
 

ω ω= Tx xTFR   (18) 

 

Where, Txω  is the translation frequency of torsionally coupled building in x-direction and xω  is the 

corresponding frequency of the shear building. Graphs of TFR can be developed for different values of 

xe r/  and ye r/ , and used to determine the natural frequencies of torsionally coupled buildings.  

 
The frequencies in the first two modes of uncoupled shear building are required in order to extract the 
mode shape coefficients at the unmeasured DOFs. The frequencies and mode shapes of the system are 
determined using the procedure proposed by Yuan et al. (1998). 
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Figure 2.     Synthesized response function for example building. 
 

Numerical Verification 

 
An eight story (N = 8) torsionally coupled building (as described in Fig. 1) has been considered to evaluate 

the proposed procedure for modal parameter extraction and mode shape interpolation. The lumped mass 

at each floor is 
i

m =180,000 kg, translational stiffness in x-direction of eight stories is Kx = 9.0x10
8
 N/m for 

the first story and 8.0x10
8
 N/m for the other stories; for each story βy =1.3225 and βt =1.6900; the 

eccentricities for each floor are xe r/  = 0.2 and ye r/ = 0.3, and the height of each story is h. The damping 

matrix of the form Caughy damping series known as Penzien-Wilson damping (Hart 1999) has been 

derived with a damping ratio for each natural mode of vibration of ξ  = 0.05. The chosen value of 

eccentricity ratio represents significant eccentricity between centers of mass and resistance (for a 

rectangular plan, xe r/ = 0.3 represents eccentricity of 8.7 % to 12.2 % of the longer plan dimension). The 

structure has been subjected to El-Centro (1940) base excitation in x-direction. In order to verify the mode 

shape interpolation scheme, it is assumed that the shear mode shape ordinates at first floor and top floor 

for the first two translational modes are known. Two cases are considered: (1) Exact or with no noise 

(NSR=0%) in the data, and (2) Data with 20% noise (NSR=20% RMS) in recorded signal representing 

significant noise in the data. It may be noted that a NSR of 20% RMS value leads to a noise of about 22 

dB. The modal responses are determined on all floors. The CCor of top floor with respect to first floor 

responses are used in the identification process of all three methods discussed earlier. The CCor are 

evaluated by taking the inverse FFT of Cross Power Spectral Density function using MATLAB software 

(Cobb 2004). The first six identified modal frequencies and damping ratios using CEM, ITD and ERA 

method corresponding to data with 20% noise are given in Table 1. It can be observed that the frequency 

is identified very accurately. The identification of damping ratio is not as good as that of frequency, but is 

still acceptable. 

 
To evaluate the effectiveness of the mode identification methods, the CPSD and CCor were synthesized 
starting from lowest to highest model order. Fig. 2 shows the synthesized cross power spectral density 
function by all three methods. In each synthesis the errors between actual and synthesized response 
function is evaluated. As expected, with the increase of model order the error decreases, but too many 
calculation modes appear in the result, leading to difficulty in identifying the actual modes. It has been 
observed that the peaks in the response function (CPSD) include frequencies which are well spaced. 
Some closely spaced frequencies do not have peaks in the response function and hence are difficult to 
identify by just identifying the peaks of response function.  
 
The frequency stability diagram shown in Fig. 3 has been used to identify actual modes among the 
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calculated modes. The frequencies that appear in each response model can be identified using this figure. 
The frequency stability diagram is drawn to identify the stable modes and also to identify the closely 
spaced modes where response functions may not have proper peaks (Mohanty and Rixen 2006) It can be 
noted from Fig. 3(a) that the CPSD does not have noticeable peaks up to frequency range of 5 Hz. 
However the stability diagram clearly indicates that natural frequencies of the structure are present in this 
frequency range.  

Figure 3. Frequency stability diagram, (a) CEM method, (b) ITD method. 
 
These are shown by a vertical line formed by symbols dropping down from the top in Fig. 3 (a) and (b). It 
is observed that the closely spaced frequencies can be identified at higher model order. The CPSD is 
superimposed on frequency stability diagram to give clear idea of response of torsionally coupled building, 
which possesses natural frequencies very close to each other. Also the response function many not have 
peaks corresponding some of closely spaced modes. For example, the peak corresponding to 2.587 Hz 
does not appear in CPSD function plot 
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The CEM, ITD and ERA methods have been able to identify all frequencies using higher model order in 
noise-free case (Fig. 2). With 20% noise case, except for the second natural frequency, first few 
frequencies have been identified accurately. This shows that the CEM, ITD and ERA method are effective 
in identifying closely spaced frequencies and can be used for modal property identification of torsionally 
coupled system. The first three mode shapes calculated (Hegde and Sinha 2006) for both the cases are 
shown in Fig. 4. Similar accuracy is also found for other five mode shapes. It is seen that there is very 
good agreement between the calculated and actual mode shapes even with 20% noise in the top and first 
floor shear mode shape values. It is further seen that the ERA method identified all frequencies within the 
range of interest, and also the damping ratios are comparable to the actual one. Hence ERA can be used 
for parameter identification from Cross Spectral Density/Cross Correlation functions. 
 

Table 1.   Frequency and damping ratio estimates with 20% noise in the signal. 
 

Natural Frequency (Hz) Damping Ratio (% Critical) 
Mode 

Exact CEM ITD ERA Exact CEM ITD ERA 

1 1.845 1.855 1.880 1.828 5.00 6.40 6.54 7.70 

2 2.207 * * 2.210 5.00 * * * 

3 2.740 2.587 2.575 2.636 5.00 8.73 3.68 6.12 

4 5.470 5.494 5.443 5.456 5.00 4.80 4.90 5.21 

5 6.542 6.600 6.620 6.610 5.00 7.88 3.52 * 

6 8.122 8.914 8.971 8.976 5.00 5.87 5.40 5.12 

       *Not Identified 

 
Figure 4. Estimated and actual mode shapes of example torsionally coupled building. 

 
Conclusions 

 
In this investigation, the cross correlation data of recorded acceleration responses of a torsionally coupled 
building have been used for modal parameter extraction. It has been shown that the floor vibration due to 
base excitations when measured at the top and the first floor are sufficient to determine the dominant 
modal properties for torsionally coupled buildings. Since the mode shapes ordinates are identified at only 
measured degrees of freedom, a mode shape interpolation technique based on uniform shear mode 
criteria has been extended to torsionally coupled building. The relationship between translational 
frequencies of torsionally coupled building and its corresponding uncoupled shear model, termed as the 
translational frequency ratio, has been used to extract the mode shapes. The numerical results indicate 
that the mode identification methods, viz. CEM, ITD and ERA, are effective in identifying closely spaced 
frequencies. For torsionally coupled buildings, the dominant modal parameters are accurately extracted 
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with only two floor acceleration measurements even with high noise levels. Since the dominant 
frequencies, damping ratios and the mode shapes are estimated accurately, the unmeasured floor 
responses can be determined with low error. 
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