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ABSTRACT 

 
Shallow foundations undergo rocking, sliding and settlement under lateral cyclic motion.  The Winkler 
foundation model is mainly used in modeling pile foundations, but can also be used to model shallow 
foundations. This paper explores the strengths and limitations of the method when used in modeling the 
cyclic response of shallow foundations.  This is accomplished by using a generalized Winkler model 
recently developed at the University of Western Ontario to simulate the cyclic response of a shallow 
foundation cyclic test conducted at the centrifuge facility of the Center for Geotechnical Modeling at the 
University of California at Davis. 
 

Introduction 

 
Soil-structure interaction (SSI) effects are often neglected when using traditional code force-based seismic 
design approaches, since its effects are judged to be beneficial.  This can be attributed to the fact that the 
consideration of SSI effects generally results in period-lengthening and increased damping, which based 
on the format of code design spectra (e.g., National Building Code of Canada (NBCC) 1995) results in 
reduced spectral acceleration values.  Although this may be true for various structures, it is an overly 
simplistic view, and has the effect of crippling design innovation, and blinding the analyst to important SSI 
response features (Mylonakis and Gazetas 2001; Allotey and El Naggar 2005b).  
 
Performance-based design (PBD) requires designing structures to meet specified performance targets.  
The design method relies heavily on nonlinear analysis procedures and requires the analysis of the entire 
soil-structure system.  The advent of this design philosophy has renewed the need to revisit simplified 
modeling approaches, with the aim of developing robust and efficient analysis tools for modeling SSI 
problems.  In this regard, the nonlinear Winkler model has received the most attention and has been the 
focus of several recent studies (e.g., Boulanger et al. 1999; Gerolymos and Gazetas 2005; Allotey and El 
Naggar, 2005a).  However, in most studies, it is used for modeling soil-pile-structure interaction (SPSI) 
problems and has not been widely used in modeling soil-foundation-structure interaction (SFSI) problems. 
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Under lateral cyclic motion, the response of spread footings is generally nonlinear involving horizontal 
displacement, settlement and rocking; part of the response is the possible dissipation of a considerable 
amount of energy.  The nonlinear Winkler model can simulate progressive mobilization of plastic capacity, 
settlement and horizontal displacement and is therefore capable of modeling SFSI problems.  In most 
SFSI studies, it has been used to simulate either the linear or nonlinear rocking response of structures, 
e.g., Psycharis and Jennings (1984), Chopra and Yim (1984), Filiatrault et al. (1992) and Anderson (2003). 
 These studies have shown the suitability of the model to satisfactorily model the rocking response of the 
SFSI problems studied. 
 
The overall objective of a larger study being undertaken by the authors is to promote the use of the 
nonlinear Winkler model for the analysis of the total SFSI problem, i.e., for the analysis of the horizontal, 
vertical and rotational response modes.  This follows the guidelines given in the National Earthquake 
Hazard Reduction Program (NEHRP) FEMA 273 & 274 documents (BSSC 1997) that recommends the 
nonlinear Winkler foundation approach for the analysis of SFSI problems.  Specifically, this paper 
presents relevant equations needed for estimating stiffness and bearing capacity distributions, and then 
points out some strengths and limitations of the modeling approach presented in the FEMA 273/274 
documents.  The paper makes use of the nonlinear Winkler model developed by Allotey and El Naggar 
(2005a) and integrated into the nonlinear structural analysis program, SeismoStruct (SeismoSoft 2003). 
 

Modeling Methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. a) Schematic of foundation under horizontal, vertical and moment actions; b) schematic of 

recommended FEMA 273/274 Winkler modeling approach. 
 
Fig. 1a shows the various vertical, horizontal and moment actions a footing is subjected to under lateral 
cyclic motion.  As shown, the behaviour of the foundation can be very nonlinear due to factors such as 
foundation uplift, soil yielding and foundation settlement and permanent horizontal displacements and 
rotations.  The FEMA 273/274 guidelines recommend that the foundation can be modeled as shown in 
Fig. 1b.  The figure shows that the horizontal response is modeled with an independent horizontal spring 
that is uncoupled from the vertical and rotational responses.   
 
The FEMA 273/274 design guidelines recommend using half-space solutions (e.g., Gazetas 1991) for the 
estimation of foundation stiffnesses, and standard bearing capacity superposition formulae (e.g., Vesic 
1973) for the estimation of the BC under concentric loading.  Foundation stiffnesses and BC can also be 
estimated from experiments such as: plate load tests, consolidation tests, triaxial tests, California bearing 
ratio (CBR) tests, etc.   
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The distribution of stiffness and BC under the foundation depends on the stress distribution under both 
working and ultimate conditions, respectively.  The stress distribution underneath a foundation is, 
however, difficult to predict and depends on factors such as soil type and load level.  Elastic solutions 
predict a theoretical convex parabolic stress distribution with infinite stresses at the edges, which in 
practice are limited to a finite value by local yielding (Shultze 1961).  For ultimate loading conditions plastic 
solutions also predict a linear-to-concave parabolic distribution of stress (Kerr 1989).  The distribution of 
stiffness and BC can therefore be quite variable and must be taken into account in SFSI analysis.  It is 
therefore useful to have generalized equations that are capable of representing various shapes and can 
be easily used in a sensitivity analysis.   
 

Development of Distribution Functions for Rectangular Foundations  

 
For a rigid rectangular foundation with plan dimensions 2a and 2b along the x and y axes, respectively, the 

vertical and rotational stiffnesses, and ultimate load can be given by: 
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where kv(x,y) and qu(x,y) are functions representing the spatial distribution of the subgrade modulus, kv, 

and the ultimate pressure, qu.  Candidate functions for kv and qu should be capable of modeling shapes 

ranging from concave to convex curved surfaces.  Two possible functions are (Allotey 2006):  
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where ς represents kv or qu, ϑr = b/a is the aspect ratio, nς is a curve shape parameter, and f1ς is a scale 

multiplier.  Since ςo > 0, Eq. 3a is convex-shaped and positive-definite for f1ς > 0; for f1ς < 0, the function is 

concave-shaped but not positive-definite.  Similarly, Eq. 3b is concave-shaped and positive-definite for f1ς 

> 0, and convex-shaped but not positive-definite for f1ς < 0.  For f1ς = 0, both functions are flat surfaces.   

 
If the average and edge values of kv and qu are known, Eqs. 1a and 2 can be used in combination with 

either Eqs. 3a or 3b to derive expressions for kv(ξr,ηr) and qu(ξr ,ηr), where ξr = x/a and ηr = y/b, i.e., 
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where, Eqs. 4a and 4b are based on Eqs. 3a and 3b, respectively.  In the equations, kv_av and qu_av are the 

average stiffness and bearing capacity, f1k and f2q are scale parameters with f1k = f1ς = (kv(1, 1)-kv(0, 

0))/kv(0, 0) and f2q = (qu(1, 1)/qu(0, 0), and nk and nq are curve shape parameters.  qu(ξr, ηr) is concave-

shaped and positive-definite when 0 ≤ f2q < 1.   
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With the definition of kv(ξr, ηr), the rotational stiffness can be derived using kv(ξr, ηr) in conjunction with Eq. 

1b or 1c.  For example, with Eq. 4a and Eq. 1c, Kθy can be derived as:  
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As f1k and nk become large, the limit of the expression in brackets gives (3ϑr + 1)/(ϑr+1).  For large aspect 

ratios, this converges to 3, and Kθy = KVa
2
.  A similar expression could be also derived for Kθx. 

 
Fig. 2a compares the predicted limiting rotational stiffness with finite element/boundary element (FE/BE) 
results, and KV and Kθy calculated from the approximate formulae given by Pais and Kausel (1988), i.e.,  
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Figure 2. Variation of homogenous halfspace static stiffnesses for a rectangular foundation with aspect 

ratio: a) vertical stiffness; b) rocking stiffness. 
 
It can be noted from the figure that the computed curve using Eq. 5 diverges from Pais and Kausel’s 
solution as the aspect ratio increases.  Varying the exponent in Pais and Kausel’s expression for KV from 

0.75 to 1, the agreement between the computed curve and the results of Pais and Kausel improves, 
showing that the observed divergence is due to the difference in the exponents of Eqs. 6a and 6b.  

a) 

b) 

Aspect ratio (ϑ
r
=b/a)

5 10 15 20

V
e
rt

ic
a
l 

st
if

fn
e
ss

K
V
/(

G
a

/1
-
υ

)

0

10

20

30

40

FE/BE results

Approx. Eq. (Pais & Kausel, 1988)

Aspect ratio (ϑ
r
 = b/a)

2 4 6 8 10

R
o
c
k
in

g
 s

ti
ff

n
e
ss

K
θ

y
/(

G
a

3
/1

-υ
)

0

10

20

30

40

FE/BE results 

Approx. Eq. (Pais & Kausel, 1988)

Computed (exponent = 0.75)

Computed (exponent = 1)

1887



Furthermore, from Fig. 2b, using an exponent of 1 in Eq. 6a does not significantly alter the agreement 
between KV obtained from the FE results and Pais and Kausel’s approximate solution.  These 

comparisons therefore confirm the suitability of the chosen distribution functions.   
 

SSG02 Centrifuge Experiment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Side view of model container with selected wall-footing locations and typical instrument 

locations for SSG02 slow-cyclic tests (after Gajan et al. 2003). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. SSG02 Station B test: a) Input displacement time-history; b) vertical cyclic load-deformation 

response. 
 
The SSG02 centrifuge experiment was conducted at the centrifuge facility of the University of California, 
Davis.  It was part of a larger SFSI project involving the testing of several SFSI systems.  The test 
considered in this study is a slow-cyclic horizontal test (frequency = 0.02 Hz) conducted at Station B on the 
test bed (Fig. 3).  Apart from radiation damping effects, the tests are representative of the actual SFSI 
response that occurs under earthquake loading.  The structure was a 10 m wall on a 2.67 m x 0.69 m 
spread footing (all prototype units) with a structural weight of 280 kN.  The load was applied in the 
lengthwise direction of the wall at a distance of 4.9 m above the base.  The input displacement history was 
a sinusoidal input displacement history with a maximum displacement of 310 mm (Fig. 4a).  The entire 
loading history was repeated, however, only a section of the second part is shown in Fig. 4a.  The 
underlying soil was a 200 mm thick bed of dry Nevada sand with an average relative density of 80%.  The 
properties of the sand were: D50 = 0.15 mm; coefficient of uniformity; Cu = 1.06; specific gravity, Gs = 2.67; 

emin = 0.559 and emax = 0.871 (Gajan et al. 2003).  Also, the frictional angle back-calculated from vertical 

load tests using BC superposition formulae was 42°.   
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Model Description and Parameter Estimation  

 
The foundation was modeled in the lengthwise direction with stiffness and BC distribution functions 
integrated in the orthogonal direction.  Fifty-one vertical springs were placed under the foundation with a 
single horizontal spring placed at the center node.  The springs in the middle zone were spaced at two 
times the spacing of the springs in the edge zone.  The multi-linear nonlinear Winkler model by Allotey and 
El Naggar (2005a) was used to model the vertical springs, whereas, a Ramberg-Osgood (RO) hysteretic 
model was used to represent the horizontal spring.   
 
The relevant input parameters used in the analysis are presented in Table 1.  These were chosen as the 
best-estimate values based on the vertical load-deformation test (similar to plate load test) results 
presented in Fig. 4b.  From the figure, the BC was found to be 1920 kN, implying a concentric vertical load 
factor of safety (FS) of 6.8.  A uniform distribution of stiffness and BC was used; this was justified since 
based on an aspect ratio of 4.1 Eqs. 4a and 4b are almost uniform.  In other words, the results for a 
convex parabolic distribution of stiffness (i.e., nk = 2, f2k = 4) and a concave parabolic distribution of BC 

(i.e., nq = 2, f2q = 0), are very similar to those obtained for the uniform distribution.   

 
Table 1. Vertical and horizontal springs model parameters. 

 

Vertical  

Stiffness/BC distribution parameters 
kv_av (MN/m

3
) 200 

qu_av (kN/m
2
) 980 

Stiff. dist. uniform 
BC dist. uniform 
Curve parameters 
p1

*
 0.05 

p2
*
 0.8 

α2 0.3 
α3 0.03 
δunl 3 

Λ 0.1 
λf (λs=1) 

(1) 
(2) 

 

0 
0.8ξr

4
 

Horizontal 

KH (MN/m) 80
+
 

ro 15 
PyH (kN) 70 

*
 Given as a ratio of the ultimate load 

+
 Value represents the case KH = 0.4KV 

 
The loading curve parameters for the vertical springs were obtained from the unload-reload curve and the 
backbone curve of the vertical load test (Fig. 4b).  The unload stiffness multiplier that relates the stiffness 
of the unload curve to the backbone curves, δunl, was estimated to be 3.  The cyclic curve shape 

parameter Λ was taken as 0.1 based on the recommended values given in Allotey (2006).  Also, two 
cases were chosen for the cyclic curve shape parameters λs and λf: Case (1) referring to the traversal of 

the full gap distance developed due to foundation uplift; and Case (2) referring to the phenomenon of “soil 
squeeze out” due to asymmetric loading (Allotey 2006).  The initial stiffness of the horizontal spring was 
estimated from half-space recommended stiffnesses given by Gazetas (1991), i.e., KH ≈ 0.78KV.  A value 

of KH = 0.4KV was also used based on findings from other case studies (Allotey 2006).   
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Results and Discussion 

 
The results of the analysis are presented in Figs. 5 – 7.  Fig. 5 shows the moment-rotation response 
including P-δ effects; a good agreement between the measured and computed results can be noted.  The 

results presented are for case (2), which as noted from other case studies (Allotey 2006), gives a better 
prediction of the moment-rotation response.  Also, the measured and computed responses show a strain-
softening response at larger rotations, which can be attributed to the influence of P-δ on the response.  It 

is therefore important that secondary order (P-δ) effects be duly accounted for in all SFSI analysis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Comparison of experimental and computed moment-rotation results including P-δ. 

 
Fig. 6 shows a comparison between the measured and predicted horizontal force-displacement 
responses.  The results show that whereas cyclic horizontal displacements are well predicted, permanent 
horizontal displacements are not.  This appears to be due to the lack of adequate coupling between the 
horizontal and vertical-rotational responses.  This can only be improved by introducing a greater degree of 
coupling, and is a limitation of the modeling approach that should be noted.  Similar to other case studies 
(Allotey 2006), initial stiffness estimates of KH = 0.4KV gave better predictions than elastic solution 

estimates. 
 
The corresponding settlement-rotation response is also presented in Fig. 7.  The general settlement 
pattern can be noted to be well-predicted, however, the final settlement is under-predicted by about 10 
mm.  Nonetheless, this prediction is better than those obtained by Gajan et al. (2005) with their macro-
element model that accounts for coupling between the various responses.  On the other hand, as a result 
of the higher degree of coupling inherent in their model, their model gave good predictions of the 
permanent horizontal displacement. 
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Figure 6. Comparison of experimental and computed horizontal force-displacement response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Comparison of experimental and computed settlement-rotation response. 
 

Conclusions 

 
This paper discussed various issues relevant to the modeling of SFSI problems with the nonlinear Winkler 
modeling approach.  Two generalized equations for rectangular foundations that can be used for either 
stiffness or BC distribution were initially presented.  These equations allow for easier performance of 
sensitivity analysis studies on the effect BC and stiffness distribution variability have on the computed 
response. This is especially important, since in practice, both distributions are not known with certainty 
apriori.    
 
The paper then focused on using the nonlinear Winkler modeling approach given in the FEMA 273/274 
design guideline - with best-estimates of stiffness and BC - for the analysis of the SSG02 SFSI case 
study.  The best-estimate parameters for the vertical springs were obtained from the vertical-load 
deformation response, and the horizontal was based on elastic solution estimates.  The results obtained 
are summarized as follows.   

i. The modeling approach presented in the FEMA 273/274 guideline was able to give good 
predictions of the moment-rotation and settlement-rotation responses, even when secondary 
moment effects were significant.  

ii. Although, cyclic horizontal displacements were well-predicted, permanent horizontal 
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displacements were not.  This is attributed to the limited coupling between the horizontal and 
vertical-rotational responses inherent in the modeling approach.  This must therefore be noted 
when using the modeling approach in practice.   

iii. The observed actual initial horizontal uncoupled spring stiffness, KH, was noted to be less than 

elastic solution estimates that are recommended in the FEMA 273/274 design guideline.  This 
could be attributed to the fact that the elastic solution estimates are obtained for a full-contact 
horizontal-only response mode.  This is in contrast with the partial-contact coupled SFSI response 
that really occurs.  
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