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ABSTRACT 

 

A simple numerical algorithm for analyzing the dynamic response and energy transfer of inelastic 
structures with nonlinear fluid viscous dampers (FVDs) is proposed. This algorithm uses the force analogy 
method in determining the inelasticity of structures, while the nonlinear damping force is treated as an 
external applied force in the analysis. Energy response for the nonlinear FVD controlled structures is 
evaluated to demonstrate the simplicity and applicability of the proposed algorithm. The effectiveness of 
installing FVDs with different nonlinear power law coefficients and damping coefficients are also compared 
and studied. 
  

Introduction 

 
Earthquake is a type of natural disaster that can severely damage and destroy human lives, properties 
and belongings. Many effective passive, active, semi-active, and hybrid control methods (Symans and 
Constantinou 1999, Soong and Spencer 2002) have been proposed to reduce the damaging effects of 
earthquakes. The fluid viscous damper (FVD), as a type of passively controlled devices, has been studied 
in great detail and practically applied to reduce the damages caused by the earthquake ground motion 
(Constantinou and Symans 1993a & 1993b). Without any major structural modification, the FVD can be 
easily installed into structures and dissipate some portions of energy to reduce the energy dissipation 
demands in structural members. 
 
Using a simple relationship between the damping force and relative velocity of linear FVDs (LFVDs), 
extensive numerical simulations, experiments, and theoretical analysis have been carried out (Reinhorn et 
al. 1995). At a later time, there are also some research works on the response of structures with non-
linear FVDs (NLFVDs) installed. Terenzi et al. (1999) analyzed the effects of the NLFVD on the dynamic 
response of single degree of freedom (SDOF) systems based on the Newmark β numerical method. 
Martinez-Rodrigo and Romero (2003) used the Newmark β method to investigate the inelastic seismic 
response of multi-degree of freedom (MDOF) systems. Due to the complexity in modeling MDOF inelastic 
structures, the Newmark β method usually requires tremendous computational work that is very time 
consuming and costly simply because the nonlinear relationship between the damping force and relative 
velocity must be addressed implicitly. 
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The objective of this study is to develop a simple explicit numerical method to predict the time history 
response of inelastic structures with NLFVD installed and define the transformation of various energy 
forms in the system. The force analogy method for inelastic structural analysis and energy balance 
equations are briefly introduced in this paper. The accuracy of the proposed method is then verified by 
using a SDOF structural model with LFVD. Finally, energy response of an inelastic multi-story frame is 
evaluated, and the contributions of FVDs with different power law coefficients and damping coefficients 
are analyzed and compared. 
 

Inelastic Dynamic Response of Structure with NLFVD 

 
Theoretical Background 

 
A FVD generally attaches to one building floor at one end and connects to another floor at the other end. 
The difference in floor motions between the two ends of the FVD produces a damping force and a source 
of energy dissipation between the two floors. When the upper floor moves and has a relative velocity to 
the story below, the FVD damping force is produced and can be expressed in the form  
 

 
η

′=′ )t(wc)t(f &  (1) 

 
where )t(f′  is the manufactured damping force due to the FVD, c′  is the manufactured damping 

coefficient of the FVD, )t(w&  is the relative velocity between two ends of the FVD, and η is a power law 

coefficient. In Eq. 1, the bracket 
η

⋅  term is defined as 
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The FVDs can be classified into the LFVDs, where the damping forces of which are linear functions of 
velocity, (i.e. 1=η ), and the NLFVDs, where the damping forces exhibits a nonlinear relationship with 

velocity, (i.e. 1≠η ). For a LFVD, the manufactured damping force can be described as 

 
 )t(wc)t(f &′=′  (3) 

 
For the more common case, )t(f′  is a nonlinear expression of velocity as given in Eq. 1, where η is 

generally less than 1.0. For simplicity, the definition using the bracket in Eq. 2 is here ignored, and Eq. 1 
becomes: 
 

 η
′=′ )t(wc)t(f &  (4) 

 
Force Analogy Method 

 
Changing the displacement, instead of changing the stiffness, to capture the yielding force is the basic 
concept of the force analogy method, which has been presented in detail by Wong and Yang (1999). This 
method is briefly described here. 
 
Consider a moment-resisting frame with ‘n’ degrees of freedom (DOFs) and ‘m’ plastic hinge locations 
(PHLs). The total displacement )t(x  of the structure at any time t can be described by the summation of 

elastic displacement )t(x′ , which can be recovered after unloading, and the inelastic displacement )t(x ′′ , 

which represents the permanent deformation once the structure exhibits inelastic behavior. This can be 
expressed as 
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 )t()t()t( xxx ′′+′=  (5) 

 
Similar to the total displacement )t(x  described in Eq. 5, the total moment )t(m  at the PHLs of a typical 

moment-resisting frame can be separated into elastic and inelastic moments, i.e., 
 
 )t()t()t( mmm ′′+′=  (6) 

 
where )t(m′  is the elastic moment due to the elastic displacement, and )t(m ′′  is the inelastic moment due 

to the inelastic displacement. The displacements in Eq. 5 and the moments in Eq. 6 are related by the 
following equations: 
 

 )t()t( TxKm ′′=′  (7) 

 

 )t()()t( 1T
ΘKKKKm ′′′′−′′−=′′

−  (8) 

 
where )t(Θ ′′  is the plastic rotation at the PHLs, K is the nn ×  global stiffness matrix, K′  is the mn ×  

matrix describing the relationship between the plastic rotations at the PHLs and the forces at the DOFs, 
and K ′′  is the mm ×  matrix that relates plastic rotations with the corresponding moments at the PHLs. 
 
Substituting Eqs. 7 and 8 into Eq. 6 and rearranging the terms, the first governing equation of the force 
analogy method is obtained: 
 

 )t()t()t( TxKΘKm ′=′′′′+  (9) 

 
Based on the compatibility condition between plastic rotation )t(Θ ′′  and inelastic displacement )t(x ′′ , the 

second governing equation in the force analogy method is 
 

 )t()t( 1
ΘKKx ′′′=′′

−  (10) 

 
Dynamic Equilibrium Equation of Motion 

 
When the NLFVD is installed in the structure, the dynamic equilibrium equation of motion becomes 
 
 )t()t()t()t()t( gMfDxKxCxM &&&&& −=′+′++  (11) 

 
where M is the nn ×  mass matrix, C is the nn ×  damping matrix, )t(x&  is the 1n×  velocity vector, )t(x&&  is 

the 1n×  acceleration vector, )t(g&&  is the 1n×  ground acceleration vector, D is the pn ×  passive control 

force distribution matrix, )t(f ′  is the 1p ×  control force vector, and ‘p’ is the number of passive dampers 

installed in the structure. Replacing the elastic displacement )t(x′  by the difference of total displacement 

)t(x  and inelastic displacement )t(x ′′  as given in Eq. 5, Eq. 11 becomes 

 
 )t()t()t()t()t()t( xKfDgMKxxCxM ′′+′−−=++ &&&&&  (12) 

 
Note that the control force )t(f ′  appears on the right side of Eq. 12, and it is therefore being considered 

and treated as an external applied force. Applying the state space method, Eq. 12 can be expressed as 
 
 )t()t()t()t()t( xFfGHaAzz ′′+′++=&  (13) 

 
where 
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and 0 is the zero matrix, I is the identity matrix, 1−  is the 6n ×  matrix that contains only 0’s and –1’s that 

relates the direction of ground acceleration to the direction of each DOF, and )t(a  is the 16 ×  earthquake 

ground acceleration vector representing the ground acceleration in all six directions, including both 
translations and rotations. If only translational ground acceleration in three directions is considered, )t(a  

becomes a 13 ×  ground acceleration vector and 1−  becomes the 3n ×  matrix. 

 
Solving for the first order linear differential equation in Eq. 13 by performing discretization, the discretized 
solution can be written as 
 

 kkkks1k xFfGaHzFz ′′+′++=
+

 (15) 

 
where 
 

 t,t,t, tttt
s ∆=∆=∆==

∆∆∆∆ GeGFeFHeHeF AAAA  (16) 

 
and ‘k’ is the discrete time step corresponding to time t. Equation 15 is a simple recursive equation, and 
the detailed recursive solution procedure has been discussed in Wong and Yang (1999). 
 
Energy Balance 

 
Based on the calculated response using the force analogy method, the energy transfers between various 
forms can then be calculated (Wong and Yang 2002). Define the absolute acceleration )t(y&&  of the 

structure’s degrees of freedom as  
 
 )t()t()t( gxy &&&&&& +=  (17) 

 
the dynamic equilibrium equation of motion as given in Eq. (11) can then be rewritten in the form: 
 
 0fDxKxCyM =′+′++ )t()t()t()t( &&&  (18) 

 
Integrating both sides of Eq. 18 over the path of structural response from 0 to kt  gives 
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Since )t(d)t(d)(td gyx −= , where )t(y&&  represents the absolute displacement of the structure and )t(g  

represents the ground displacement, Eq. 19 can be rewritten in the form: 
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In addition, since )t(d)t(d)t(d xxx ′′+′=  based on Eq. 5 rewritten in differential form, substituting this result 

into the third term of Eq. 20 gives 
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Note that the first three terms on the left side of Eq. 21 represent the kinetic energy (KE), natural damping 
energy (NDE) and strain energy (SE), respectively. According to the force analogy method, the fourth term 
on the left side of Eq. 21 can be rewritten in the form of plastic energy (PE) dissipation at individual plastic 
hinges based on Eqs. 7 and 10 as 
 

 ∑∑∫∫∫∫
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where )t(mi′  represents the elastic moment at the ith PHL, and )t(d iθ ′′  represents the incremental plastic 

rotation at the ith PHL. 
 
The fifth term on the left side of Eq. 21 represents the manufactured damping energy (MDE).  The term on 
the right side of Eq. 21 is the input energy (IE), which is due to the earthquake excitation.  Finally, Eq. 21 
can be written as 
 
 IEMDEPESENDEKE =++++  (23) 

 
Verification of the Nonlinear Algorithm Using a SDOF System 

 
To verify the accuracy of the proposed nonlinear algorithm for dynamic analysis of inelastic structures with 
NLFVDs, a comparison of response is performed using a SDOF elastic system with LFVD installed. The 
equation of the LFVD follows from Eq. 3 with )t(x)t(w && =  that 

 
 )t(xc)t(f &′=′  (24) 

 
Therefore, with a LFVD installed in a SDOF system, the analysis can be done using any classical 
numerical methods such as the Newmark β numerical method with inelastic capability. For this case, the 
SDOF dynamic equilibrium equation becomes: 
 
 [ ] )t(gm)t(xk)t(xcc)t(xm &&&&& −=′+′++  (25) 

 
where the bolded notations are removed to denote scalar quantities. As a numerical verification of the 
nonlinear algorithm, consider a SDOF system with structural parameters shown in Fig. 1 with a yield 
moment of 1,690 kN-m at the PHL. Elastic-plastic behavior is used for the column’s plastic hinge. The 
system is subjected to 1994 Northridge earthquake as shown in the first figure of Fig. 2. Based on this 
SDOF system with LFVD setup, Fig. 2 compares the structural response based on the “External Force” 
method described in Eq. 12 and the “Damping Force” method described in Eq. 25. It can be seen that the 
differences between the time history responses for the two methods are very small. Therefore, it is 
concluded that treating the force in FVD as an increase in damping coefficient (see Eq. 25) or a reduction 
in the external excitation force (see Eq. 12) is practically the same for evaluation of the time history 
response, and the proposed numerical algorithm gives satisfactory accuracy. 
 

x(t)

c, k

m
c’

m = 175,100 kg

k = 3,075 kN/m

c’ = 10 kN-s/m

c = 20 kN-s/m

θ”

3 m

0.25 m

 
 

Figure 1.   Single degree of freedom model. 
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Figure 2.  1994 Northridge earthquake and comparison of responses between two methods. 

 
Response and Energy Analysis of Multi-story Frame 

 
For a multi-story passively controlled structural system, the FVDs are usually installed with one end of the 
FVD connects to the upper floor and another end of it attaches to the lower floor. In doing so, the damping 
forces of the FVD applied on the two floors will be of the same magnitudes but in opposite directions. 
 
As a numerical example, consider a six-story passively controlled steel frame as shown in Fig. 3. Assume 
the mass of every floor is the same and equals to 630,400 kg, and the natural damping is a uniform 
diagonal matrix of the form IC ×= c , where 1.210c =  kN-s/m. The FVDs are installed between every 

floor as shown in Fig. 3, and they are labeled from C1 to C6. After performing static condensation to 
reduce the rotational degrees of freedom, the frame becomes a system with 6 DOFs and 40 PHLs as 
labeled in Fig. 3. Assume that plastic hinges exhibit elastic-plastic behavior. Yield moments are calculated 
by multiplying the plastic modulus of each section with the yield stress of steel. A uniform gravity load of 
21.89 kN/m is assumed to act on the beams of every floor. 
 
The horizontal component of the manufactured damping force along the direction of DOFs presented in 
Eq. 15 can be written as 
 

 
η

′′=′ kk wCIf &  (26) 
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Figure 3.   Six-story moment-resisting steel frame with NLFVD. 
 
where I′  is the pn ×  matrix that relates the effects of the FVDs on each DOF, and kw&  is the 1p ×  vector 

of relative velocities between the two ends of the dampers. Based on the setup shown in Fig. 3 where 
6p = , the matrices can be written as: 
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Assume IC ×′=′ c  is a 66 ×  matrix, the energy time histories of the six-story passively controlled 

structure are now studied by subjecting it to the 1994 Northridge earthquake time history shown in Fig. 2 
with different power law coefficients but with the same damping coefficient of 500c =′ . The four cases for 

energy response comparisons include the six-story structure with no FVDs, linear FVDs (i.e., 1=η ), low-

nonlinear FVDs (i.e. 7.0=η ), and high-nonlinear FVDs (i.e. 35.0=η ). The comparisons of energy 

responses are plotted in Fig. 4. 
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Figure 4.   Comparisons of energy response of different power law coefficients. 

 
 
As shown in Fig. 4, IE remains practically unchanged for the four cases while NDE and PE are reduced to 
different levels due to the presence of FVDs. The use of high-nonlinear FVDs (i.e. 35.0=η ) gives the 

lowest structural energy response, while it also produces the largest FVD damping energy (MDE) 
response. The PE response shows little differences between the linear, low-nonlinear, and high-nonlinear 
FVDs cases, but it is reduced in all cases when compared to the case with no damper. This shows that it 
is always advantageous to install dampers for the reduction of plastic energy dissipation and thereby 
reducing the damage in the structure. 
 
Based on these comparisons, it is concluded that the existence of the FVDs does not change the input 
energy, but it helps protect the structure by drawing some portions of the input energy and dissipating it in 
the form of manufactured damping energy (MDE), thereby reducing the plastic energy (PE) dissipation 
demands on the structure members.  The properties of the FVDs (either linear, low-nonlinear, or high-
nonlinear) have a small influence of the magnitude of the plastic energy in terms of percentage, while the 
difference is mainly dissipating more manufactured damping energy for high-nonlinear FVDs at the 
expense of reducing the dissipation of natural damping energy. Among the four cases, the high-NLFVDs 
dissipate the most energy. 
 
Now the contributions of the FVDs with the same power law coefficient of 35.0=η  but with different FVD 

damping coefficients (i.e., 0c =′ , 500c =′ , and 1000c =′ ) are compared.  Note that 0c =′  means no FVD 

is used. The results of energy response comparisons are presented in Fig. 5. 
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Figure 5.   Comparisons of energy response of different manufactured damping coefficients. 

 
As shown in Fig. 5, both NDE and PE are reduced due to the use of FVDs. Input energy does not change 
much for different FVD damping coefficients, which again proves that the input energy is not much 
affected by the presence of FVDs. With the increase of FVD damping coefficient, MDE increases while 
both PE and NDE decrease. This shows that the presence of FVDs extracts dissipative energy in the 
forms of PE and NDE and releases it in the form of MDE. 
 
From the comparisons of different power law coefficients and FVD damping coefficients, it is observed 
that the control effect is more effective for high-nonlinear FVDs (i.e., small η) with high damping coefficient 
(i.e. large c′ ). 

 
Conclusions 

 
In this research, a simple numerical algorithm based on the force analogy method is proposed to calculate 
the inelastic dynamic analysis of structures with nonlinear fluid viscous dampers. Study using a single 
degree of freedom system with a linear fluid viscous damper shows that the proposed algorithm is efficient 
and gives satisfactory accuracy. Numerical simulation is then performed on a multi-story passive 
controlled steel frame, and it is shown that the force analogy method is very suitable for the inelastic 
dynamic analysis of the passive controlled structures. Energy response of the passive controlled 
structures with different power law coefficients or FVD damping coefficients are also compared and some 
conclusions are drawn: 
 
• The energy response of passively controlled structures can be effectively controlled with the 

installation of FVDs.  
 
 
• Regardless of whether a structure has FVD installed or not, the input energy remains practically 
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unchanged. The FVD is excellent in dissipating manufactured damping energy and releases the 
plastic energy demands of the structure members.  

 
• The FVD, with lower power law coefficients (i.e., smaller η) and higher FVD damping coefficients (i.e., 

larger c′ ) contributes more to the reduction of structure vibrations. 
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