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ABSTRACT 
 

Global difference operators are constructed to recast the linear shallow water equations in 

a matrix form.  The matrix form allows for a straight forward switch from the traditional 

single-source Green’s function to a new type of Green’s function, an all-source Green’s 

function (ASGF). The values of the ASGF in tsunami real-time simulations and in 

inferring initial forcing are discussed. Also presented are implementation details for a 

demonstrative real-time system to simulate tsunami arrivals at points of interest from 

anywhere in the North Atlantic Ocean. 

 

Keywords: shallow water equations, global difference operators, sparse matrices, all-

source Green’s functions, real-time tsunami simulations. 

  

Introduction 

A tsunami is disastrous, yet fortunately its propagation in deep water (>50m, Shuto 1991) 

obeys the linear long wave dynamics very well. This means that Green’s functions can come to 

help for a quick real-time simulations to win life saving time. This is because Green’s functions 

can be pre-calculated and can be linearly combined to instantaneously yield the ocean’s response 

to an eventual tsunami forcing. Traditionally a Green’s function is defined as a system wise 

response to a delta-impulse acting at one point. However a tsunami is rarely triggered at one 

point. A logical extension is to pre-calculate a group of Green’s functions corresponding to a 

group of points in a pre-assumed tsunami source region. Nevertheless when a future tsunami 

happens outside of the pre-assumed source region, the pre-calculated Green’s functions will not 

be helpful.  

Xu (2007) proposed a new type of Green’s function, all-source Green’s function (ASGF), 

which focuses on a receiver point, regarding all the model grid points as the potential source 

points. The computational cost for calculating an ASGF is the same as that for an SSGF, 

however the ASGF provides a thorough preparedness for a point of interest (POI) against all 

possible sources. Xu recast the linear shallow water equations in matrix form with a few 

discretized global operators as sub-matrices. This led him to calculate the ASGFs in a straight 
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forward manner. Based on the ASGF, he further proposed and demonstrated 1) a real-time 

simulation system of tsunami arrivals from anywhere in the North Atlantic Ocean, 2) a tsunami 

arrival time chart at a POI, as against the traditional tsunami travel time chart out of a source 

point, and 3) a tsunami gain chart, where a gain is defined as the maximum amplitude during 12 

hours relative to the source amplitude. However for that paper he omitted on how to construct 

the discretized global operators and how to recast the linear shallow water equations in a single 

matrix equation. This paper will focus on this important aspect. It will also detail the 

implementation of the North Atlantic Ocean real-time tsunami simulation system. 

 

Linear Shallow Water Equations in Matrix Form 

 

 The following continuous form of the linearized shallow water partial differential 

equations in spherical coordinates are chosen for modeling the tsunami propagations in deep 

waters mounted on the rotating Earth with frictions on the seabed, 
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where the notations are explained  in the table below:  

 

λ , φ, t Longitude, latitude, and time variables  respectively 

η, u, v, 
Sea surface elevation, depth  averaged velocities in longitudinal and 

latitudinal directions  

f, g, R, Coriolis parameter, gravity acceleration, and the Earth' mean radius. 

h, κ 
Water depth and bottom frictional coefficients, 𝜅 = 2.4 × 10−3m/s 

(Heaps, 1969). 

 
Table 1 Notations in the linear shallow water equations. 

 

 The lateral boundary conditions are no normal flows at the solid boundaries and 

Sommerfeld (1949) radiation conditions at open water boundaries.  The no-normal flows at the 

solid boundaries result in the following geostrophic flow constraints:  

 

𝑓𝑣 = 
𝑔

𝑅 cos 𝜑

𝜕𝜂

𝜕𝜆
   at east-west solid boundaries, where 𝑢 ≡ 0 (4) 

𝑓𝑢 = −
𝑔

𝑅

𝜕𝜂

𝜕𝜑
 at south-north solid boundaries, where 𝑣 ≡ 0 (5) 

 

where the east-west solid boundaries mean  those solid boundaries whose normal directions are 

in the longitudinal directions, and the south-north solid boundaries mean those solid boundaries 
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whose normal direction in the latitudinal directions.  Along these solid boundaries, either  𝑢 ≡ 0  

or  𝑣 ≡ 0, resulting in the geostrophic relationship as appropriate boundary conditions.  Note the 

lateral frictional effects are not considered here, which means flow can slip against the walls. 

 

 The general form of the Sommerfeld radiation boundary conditions is   

 
𝜕𝑝

𝜕𝑡
+ 𝑐

𝜕𝑝

𝜕𝑛
 = 0 (6) 

 

where p may represent u or η if they are not collocated on a computational grid or both if they 

collocated, and c is a phase speed, and 𝜕𝑛 means an infinitesimal line segment outward normal 

to the open boundaries. Chapman (1985) discussed various forms of c and compared their 

numerical effects on the quality of the model solutions inside of the model domain. For this 

study, 𝑐 =  𝑔𝑕 is taken. 

  

 The spatial differential operators, 𝜕/𝜕𝑥  and 𝜕/𝜕𝑦 , can be approximated by spatial 

difference operators  Δ/Δ𝑥, and Δ/Δ𝑦.  The latter are usually treated as point-wise operators, 

which means, for example, when Δ/Δ𝑥, operates on a local point 𝑢𝑖 , it only produces a local 

result for that point,  Δ𝑢𝑖𝑗 /Δ𝑥 = (𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 )/Δ𝑥 .  This study takes a global operator 

approach. This means that all the point-wise operators are assembled first into a single matrix 

before any operations on the solution vector take place.  The ASGF proposed by Xu (2007) was 

based on the global operator approach. How to build the global operators was not reported in that 

paper. The following discussion shows how they can be built. 

 

 For example, in place of continuous form of  𝜕(𝑕𝑢)/𝜕𝑥 , there will be 𝔺𝕀𝕍𝑥  (𝑕𝑢), where  

the hu in the second expression is a column vector as a collection of the discretized version of the 

continuous version of hu in the first expression. Here the notation 𝔺𝕀𝕍𝑥  in double struck letters 

stands for a single sparse matrix, when it operates on the column vector hu, it produces the mass 

divergence in the x-direction at all the elevation grid points in the entire model domain. Thus, the 

matrix 𝔺𝕀𝕍𝑥  is a global operator.  Note that the notation x and y does not necessary imply a 

Cartesian coordinate system. In this paper they should be understood as synonyms to longitudes 

and latitudes. Because each node is connected with only a few neighbor nodes, the global 

operator is a highly sparse matrix and should accommodated by a sparse matrix storage scheme.  

 

 With the global operators, one can approximate Eqs. (1), (2) and (3), together with all the 

appropriate lateral boundary conditions, by a single matrix equation as below, 

 

𝜕

𝜕𝑡
 

𝜂
𝑕𝑢
𝑕𝑣

  =  

O + 𝕆𝔹𝜂 −𝔺𝕀𝕍𝑥 −𝔺𝕀𝕍𝑦

−𝑔𝑕𝔾ℝ𝔸𝔺𝑥 𝕊ℕ𝑥𝑓 − 𝜅𝑕−1 + 𝕆𝔹𝑢  I − 𝕎𝔻𝑥 𝑓

−𝑔𝑕𝔾ℝ𝔸𝔺𝑦  𝕊ℕ𝑦 − I 𝑓 −𝕎𝔻𝑦𝑓 − 𝜅𝑕−1 + 𝕆𝔹𝑣

  

𝜂
𝑕𝑢
𝑕𝑣

  (7) 

 

where different operators (sub-matrices) are explained in Table 2 below. The geostrophic 

relations at the solid boundaries conditions shown in Eqs.  (4) and (5) are implemented through 

the four solid boundary operators,  𝕊ℕ𝑥 , 𝕊ℕ𝑦, 𝕎𝔻𝑥,and 𝕎𝔻𝑦, which give the Coriolis force 
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upon operating on 𝑕𝑢 and 𝑕𝑣 at all the velocity points along the coasts, and through the two 

pressure gradient operators, 𝔾ℝ𝔸𝔺𝑥  and  𝔾ℝ𝔸𝔺𝑦 , which, upon  operating on the elevation 

vector η,  produce the pressure gradient forces at all the velocity points globally including those 

along the coasts.  Here a west solid boundary does not necessarily mean the far west boundary in 

a model domain.  To cover arbitrary costal and island geometries, a west solid boundary is 

defined as any solid boundary where there is water to its east. The east, north and south solid 

boundaries are defined similarly. 

 

O 
A zero-matrix of size  𝑚 × 𝑚 where m is the number of total 

elevation grid points. 

𝔺𝕀𝕍𝑥 , 𝔺𝕀𝕍𝑦  
Matrix operators, of sizes  𝑚 × 𝑛 , for the mass divergences in 

x- and y-directions, where n stands for the number of the 

velocity grid points.  

𝔾ℝ𝔸𝔺𝑥 , 𝔾ℝ𝔸𝔺𝑦  
Sea surface gradient operators in x- and y- directions, and of 

sizes 𝑛 × 𝑚.  

𝕊ℕ𝑥 , 𝕊ℕ𝑦 , 
Two south-north solid boundary operators in x- and y-directions 

respectively, and of sizes 𝑛 × 𝑚. 

𝕎𝔻𝑥 , 𝕎𝔻𝑦  
Two west-east solid boundary operators in x- and y-directions 

respectively, and of sizes 𝑛 × 𝑚. 

𝕆𝔹𝜂 , 𝕆𝔹𝑢 , 𝕆𝔹𝑣 

Three open boundary operators for η-, u- and v- points 

respectively. The size of 𝕆𝔹𝜂  is 𝑚 × 𝑚 and the sizes of  𝕆𝔹𝑢  

and  𝕆𝔹𝑣  are 𝑛 × 𝑛.  

𝑕, 𝜅 

Diagonal matrices for the spatial varying water depths and 

bottom frictions respectively. Their sizes are 𝑛 × 𝑛. For this 

study, 𝜅 = 2.4 × 10−3I. 

𝑓, I 
A diagonal matrix for the spatial varying Coriolis parameter , 

and  an identical matrix ; their sizes are 𝑛 × 𝑛. 

𝑔 A scalar for the earth’s gravity acceleration. 

 
Table 2.  An operator table. The x- and y-directions as well as the x and y subscripts in the table 

do not necessary imply a Cartesian coordinate system being used. In this study, the x and y should 

be regarded as synonyms to longitudinal and latitudinal coordinates. 

 

 The open water boundary conditions are implemented through the operators 𝕆𝔹𝜂 ,

𝕆𝔹𝑢,and 𝕆𝔹𝑣. Note that these open boundary operators have non-zero elements only at rows 

corresponding to the open boundary nodes, and that they are mutual exclusive with the other 

operators in that when  𝕆𝔹𝑢 , for example, has non-zero rows, all the other operators and sub-

matrices in the second line of Eq. (7) will have all zero elements in the corresponding rows.  

 

 Now the continuous shallow water PDEs have been semi-discretized, by which it is 

meant that they are still continuous in time.  All the dynamics and the lateral conditions and 

arbitrary geometry and have been encapsulated into the coefficient matrix. For this reason, it may 

be referred as the dynamic matrix. The dynamics matrix consists of 3 × 3 sub-matrices. The 

roles and meaning of the sub-matrices should be self evident through their descriptive notations 
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and their positions corresponding to the positions of the terms in the shallow water equations in 

continuous form. If one zeros-out subs(2:3,2:3), which mean the sub-matrices from the second to 

third rows and from the second to the third columns, the dynamics is reduced to the wave 

dynamics on a non-rotating frame, which seems also a common choice in tsunami research.  

 

 So far, no commitment has been made to a particular type of spatial grid, nor to a special 

time discretization scheme. Thus, one is free to choose a combination of spatial-time 

discretization schemes in forming a stable and good quality numerical model. This study adopts 

the same staggered grid as that used by Heaps (1969), where the elevation points are located in 

the middle of cells and velocities points are collocated on the corners of the cells (See Error! 

Reference source not found.). Arakawa and Lamb (1977) catalogued this type of grid as B-grid. 

The grid is constructed such that all the elevation points are the interior points.  This means that 

the Sommerfeld radiation condition is only applied to u- and v- open water boundary points, and 

hence  𝕆𝔹𝜂  can be entirely removed from Eq. (7). With the boundary operators presented in the 

matrix equation, one can easily switch between different types of boundary conditions. 

 

Figure 1. The same 

staggered grid as that in 

Heaps (1969) is used for 

this study. It is also 

known as Arakawa B-

grid. 

 

 Further numerical details can be found in Heaps (1969) with one exception: In treating 

the pressure gradient along a lateral boundary, Heaps required that there were at least two 

elevation points next and perpendicular to the boundary. He constructed an ad-hoc grid for 

modeling storm surges the North Sea so that such requirement was always met. In covering a 

general geometry, especially with a fine resolution, it is not always possible to have at least two 

such interior elevation points. There are many narrow channels/bays which can only hold one 

such elevation point. Thus this study uses only one elevation node in treating the pressure 

gradient along a coast. The existence of at least one such elevation node is guaranteed, since 

otherwise the channel/bay would be a solid land.  It is in the author’s plan to publish elsewhere a 

set of Matlab functions to calculate the global operators. 

 

 With a simple forward difference scheme in time, Eq. (7) can be further approximated by  

 

 

𝜂
𝑕𝑢
𝑕𝑣

 

(𝑘+1)

 = 𝐵  

𝜂
𝑕𝑢
𝑕𝑣

 

(𝑘)

 (8) 

 

where 𝐵 = 𝐼 +△ 𝑡𝑀 in which M stands for the dynamic matrix in Eq. (7) for brevity,  △ 𝑡 is the 

time step, I is an identical matrix, the superscript k inside the parentheses indicate the time steps. 

To stabilize the numerical scheme, Heaps (1969) used the most updated variables in evaluating 
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the right hand side of Eq. (8). Thus Eq. (8) should be modified as  

 

 
𝜂
𝑕𝑢
𝑕𝑣

 

(𝑘+1)

 =  

𝐵11 𝐵12 𝐵13

0 𝐵22 𝐵23

0 0 𝐵33

  
𝜂
𝑕𝑢
𝑕𝑣

 

(𝑘)

+  
0 0 0

𝐵21 0 0
𝐵31 𝐵32 0

  
𝜂
𝑕𝑢
𝑕𝑣

 

(𝑘+1)

 (9) 

 

The above equation can be further cast as  

 

 
𝜂
𝑕𝑢
𝑕𝑣

 

(𝑘+1)

 = A  
𝜂
𝑕𝑢
𝑕𝑣

 

(𝑘)

 (10) 

 

where  

A =  
𝐼 0 0

−𝐵21 𝐼 0
−𝐵31 −𝐵32 𝐼

 

−1

  

𝐵11 𝐵12 𝐵13

0 𝐵22 𝐵23

0 0 𝐵33

  (11) 

 

The inversion of the first factor matrix is easy to calculate, since no actual inversion needs to be 

performed.  It is,  

 
𝐼 0 0

−𝐵21 𝐼 0
−𝐵31 −𝐵32 𝐼

 

−1

 =  
𝐼 0 0

𝐵21 𝐼 0
𝐵32𝐵21 + 𝐵31 𝐵32 𝐼

  (12) 

 

Thus, A can be finally expressed as 

 

A =   

𝐵11 𝐵12 𝐵13

𝐵21𝐵11 𝐵21𝐵12 + 𝐵22 𝐵21𝐵13 + 𝐵33

𝛽𝐵11 𝛽𝐵12 + 𝐵32𝐵22 𝛽𝐵13 + 𝐵32𝐵23 + 𝐵33

  (13) 

 

where β = B32B21 + B31 .  Since the dynamics matrix M is now contained in matrix A, the latter 

may be also called the dynamics matrix.  It is a global operator too, a giant one containing all the 

others. When it operates the current ocean state vector, [𝜂 𝑕𝑢 𝑕𝑣]𝑇, it updates the state vector to 

the next time step. For this reason, it may be also called the update operator/matrix. 

 

Heaps (1969) suggested the time step as △ 𝑡 = 𝑟 2 min(𝑅 △ 𝜙, 𝑅 cos 𝜙 △ 𝜆) / 𝑔𝑕  

where r is a lower bound to bring the time step △ 𝑡 within the maximum value allowed by the 

CFL condition. In this study, r is set as 0.99. 

 

Single-Source Green’s Functions versus All-Source Green’s Functions 

 

With Eq. (10), one can now put the SSGF and the ASGF on the same footing for 

comparison. This helps to see clearly the logical development from the former to the latter, and 

their different focuses and features as well.  
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Single-Source Green’s Function (SSGF) 

 

 Traditionally a Green’s function is mathematically defined as the response of a linear 

dynamic system to a delta impulse acting on a spatial point, and computationally calculated as 

model’s solution to a unit impulse acting on a model grid point.  For the setting here, this means 

that 

 

 SSGF(:, kmax)=zeros(m+2*n,1);  % pre-allocate memories 

 SSGF(i,1)=1  ;                                % a unit source at i’th grid point. 

 

for k=2:kmax                                % time stepping 

                 SSGF(:,k)=A*SSGF(:,k-1); 

end 

 

where A is specified by Eq. (13).  Thus, a Green’s function can be pre-calculated before any real 

tsunami happens. When a future disturbance indeed happens at the i’th grid point, a scale up or 

down of the pre-calculated Green’s function can immediately give the response to the 

disturbance. Note that a feature of this type of Green’s function is that the information is sourced 

at one point but received by all the points.  This is why it is called single-source-all-receiver 

Green’s function, or in short, single-source Green’s function (SSGF).   

 

 A tsunami is rarely trigged just at one grid point.  A logical extension of this approach is 

to compute a group of SSGFs by placing the unit forcing successively at each of a subset of grid 

points, which may cover a seismic active zone. Nevertheless, when a future tsunami is trigged 

outside of the pre-assumed zone, the pre-calculated Green’s functions would become useless. To 

achieve thorough hazard preparedness, one would have to include all the model grid points as 

potential sources. If there are N model grid points, and if the computational load for one source is 

a 1 × 𝑁 problem, then the computational load for N-sources is a 𝑁 × 𝑁 problem. When N is 

large, the problem becomes infeasible to tackle.  

 

All-Source Green’s Functions (ASGF) 

 

 The all-source  Green’s function (ASGF) proposed by Xu (2007) focuses on a receiver 

point, regarding all the model grid points, including the receiver point itself,  as the potential 

sources. The receiver point can be any point of interest (POI) for socio-economic, academic or 

monitorial reasons. As will become clear soon, a model run for an SSGF and a model run for an 

ASGF cost the same computationally, however the difference lies in their preparedness. An 

ASGF prepares a single POI against the entire ocean as the potential hazard sources, whereas an 

SSGF prepares the entire ocean against a single source point. Obviously there is no need to know 

how large tsunami waves will be in the middle of the oceans, whereas it is desirable that an 

important coastal city is prepared against the whole spectrum of tsunami sources.  

 

 With the shallow water equations in matrix form, one can now calculate an ASGF very 
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easily: instead of matrix-vector multiplications, he can just perform vector-matrix 

multiplications, as shown by the following code snippet 

 

 ASGF(kmax,:)=zeros(1,m+2*n);      % pre-allocate memories 

 ASGF(1,i)=1;                                    % a POI at i’th grid point,  

 

for k=2:kmax                                     % time stepping 

                 ASGF(k,:)=ASGF(k-1,:)*A; 

            end 

 

So obtained ASGF(k,:)  is actually the i’th row of the dynamic matrix to the k’th power, 𝐀𝐤. 

However the algorithm avoids power calculations of the whole matrix; it only calculates for what 

is just needed.  

 

 In contrast with the feature of SSGF, the ASGF has a feature that the information can be 

sourced all over the domain but is received only at one point.  This is why it is called all-source-

one-receiver Green’s function, or in short, all-source Green’s function (ASGF).  Note that the 

received information from the N-sources is not mixed up; the receiver has N-rooms (i.e., the N-

columns) to hold N-pieces of information separately. The information will not be mixed up until 

a real-time event happens.  

 

  When a real-time event happens, the information stored in different rooms will be mixed 

up in right portions according to the actual forcing distribution.  Speaking precisely, when a real-

time tsunami is triggered, and if the initial tsunami distribution at the source region can be 

obtained by some other means, i.e., if the initial value of the w-vector,  

w(0) = [η 0  hu 0  hv 0 ]T , can be supplied, then the pre-calculated ASGF can be used to 

immediately produce a time series of the tsunami arrivals at the POI: one matrix-vector 

multiplication, ASGF × w(0), takes little time to yield an arrival time series.   

  

 Comparing the above code snippets for SSAF and ASGF, one can see that the trick in 

switching from the SSGF to ASGF is to change the operation of the dynamic matrix on a column 

vector to its right side to the operation of the same dynamics matrix on a row vector to its left 

side.  Multiplication of a row vector with a matrix costs the same as that of the same matrix with 

a column vector. That is why it has been said that the computational load for an ASGF is the 

same as that for an SSGF. The ASGF cuts down the un-needed computations for the most part of 

the ocean and transfers the saving to the full preparedness of a POI. 

 

A Demonstrative Real-time Simulation System for Tsunami Arrivals from Anywhere in the 

North Atlantic Ocean 

 

 With the ASGFs, a demonstrative system for real-time simulations of tsunami arrivals 

from anywhere in the North Atlantic Ocean has been developed. It is a web based system, hosted 

at http:// odylab.uqar.ca/tsunami. Figure 2 shows its graphical user interface (GUI). Users can 

specify an arbitrary polygon as tsunami source region anywhere in the North Atlantic Ocean  
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by clicking on the map for the apex points of the polygon. Users can also choose one or several 

pre-determined POIs. After the specification, they can press the “Make plot!” button.  In a few 

seconds a window will pop-up showing the arrival time series at the chosen POI(s). The box in 

the lower-left corner of the GUI shows how many seconds elapsed after the button “Make plot!” 

is pressed. 

 

 The system has 7 pre-calculated ASGFs for the 7 POIs offshore eastern Canada as shown 

by the white circular disk. More POIs could be added of course. These ASGFs are stored in hard 

disk in an organized way so that they can be loaded back to RAM quickly when a tsunami source 

region becomes known in real-time. In Figure 2, a tsunami source region is specified in the white 

polygon offshore African coast, and a POI for Halifax Canada on the other side of the ocean is 

selected. Within 7 seconds of the source specification, a pop-up window will show a 12-hours 

long time series of tsunami arrivals at Halifax as shown in Figure 2. The curve tells when will be 

the first arrival time, what will be the largest relative amplitude within 12 hours. All the details 

of arrivals are contained in the curve.  The 12 hours period is somewhat arbitrary; it can be 

changed for some other reasons.  

 

 If one covers the area of the ocean by a set of tiles with size of, say 100 × 100 𝑘𝑚2, for 

source regions, one can have a set of arrival curves at Halifax. From each of these curves, one 

can read off a pair of numbers, the first arrival time and the relative maximum amplitude within 

certain period (12 hours in the shown example).  Xu (2007) defined the relative maximum 

amplitude driven by a small square like this as a gain. Thus, one can assign to each square a pair 

of number, an arrival time and a gain. Contouring the times through the squares, one can have a 

chart of tsunami arrival times at Halifax. Contouring the gains, one can have a gain chart as well.  

The time and the gain are equally important information for hazard preparedness for a POI. For 

examples of such charts, see Xu (2007). 

 

 The initial tsunami source function is simply assumed as follows 

 

𝜂(0) =  
1, 𝑓𝑜𝑟 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡𝑕𝑖𝑛 𝑡𝑕𝑒 𝑠𝑜𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑜𝑛,
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒,

  (14) 

𝑢(0) = 𝑣(0) = 0          𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠. (15) 

 

A GUI component can be added later on to allow the user to specify an arbitrary initial forcing, 

including non-zero initial velocities. With this feature, the system can serve a good research tool 

as well. For example, a geologist can specify a submarine landslide distribution based on sea 

bottom sonar scan data, and then to see what the response curve will be at certain POIs.  

 

 The ASGF should not be saved in a single large file.  It should be chopped into many 

smaller ones in order to have a quick disk access when needed. One can achieve this is first by 

tiling the model domain, then by regrouping the columns of the ASGF such that each group of 

columns corresponding to a tile is  saved as a small file. When a tsunami source polygon is 

specified, what tiles that the polygon falls into can be detected. Therefore only the ASGF files 

belonging to those tiles need to be read off the disk.  
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 An equal area map projection, the sinusoidal projection, is used to for the map in the 

GUI, so that when a polygon is clicked for tsunami source, the area of the polygon shown on the 

map will be the actual area of the source region. Note the map projection is for the GUI only; the 

model itself does not need any map projection, since it is developed in the spherical coordinates. 

 

 

 

 
Figure 2. A demonstrative real-time simulation systems for tsunami arrivals at points of interest from 

anywhere in the North Atlantic Ocean is shown on the left. The POIs are located offshore eastern Canada. 

A white polygon offshore African coast was clicked for a tsunami source region. Within 7 seconds from 

the source specification, a window pops up to show the response curve at Halifax(right).  

 

Conclusions 

 

 Constructing global operators is rewarding. With the global operators, one can easily 

recast the linear shallow water equations in a matrix form. A matrix form of the shallow water 

equation brings in many advantages. The most significant one is that switching from the 

traditional single-source Green’s functions to the all-source Green’s function (ASGF) becomes 

straightforward; it is done simply by changing the column operation to a row operation. As 

demonstrated, the ASGF is very useful to real-time simulations of tsunami arrivals at a POI from 

anywhere in oceans. It transfers instantaneously a forcing anywhere to responses at a POI. If it is 

supplied with an initial tsunami forcing as soon as a tsunami is triggered, the ASGF can provide 

a local run-up model immediately with nearshore open water boundary conditions. This will help 

the local run-up model to have sufficient time to simulate possible inundation scenarios, 

providing disaster mitigation decision makers with sounding information.   

 

 An initial tsunami forcing should directly come out of a tsunami generation model. 

However in case it is difficult to do so, the ASGF can be of help to indirectly estimate the initial 

forcing:  Let the ASGFs be pre-calculated for a set of tsunami monitoring stations (such as the 
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DART mooring system,  http://nctr.pmel.noaa.gov/Dart/about-dart.html), when tsunami signals 

arrive at these monitoring stations, the pre-calculated ASGFs can be used, as in an inverse 

problem, to infer the initial conditions at a source region. 

 

 If a real-time arrival simulation system can be established for the North Atlantic Ocean, 

so it can be for the whole world ocean. A global coverage may require billions of grid points; 

however the number of important coastal cities worldwide is a very small number compared with 

the huge number of the grid points. It is thus feasible to pre-calculate the ASGFs for the 

worldwide important coastal cities.  

 

  The demonstrated North Atlantic system is web-based. To cut down the time needed to 

travel through the internet, the system can be made on a local desktop. Every local emergency 

manage officer (EMO) should have such a tool in their office. When a real event happens, and 

even if the initial forcing cannot be obtained in time, the system still can tell the EMOs the time 

and maximum relative amplitude.  It will make EMOs a significant difference in responding if 

they can be told the gains in their coasts are less than 10% or more than 90% of the largest ever 

possible waves in a source region. 
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