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ABSTRACT 
 

 The paper presents results of an analytical and numerical study of the tsunami 

propagation upstream in river channels. This phenomenon was observed in 1983 

and more recently in 2003 when tsunami waves ascended several rivers in Japan 

in the form of a hydraulic bore. A mathematical model for tsunami propagation in 

rivers as both undular-type and non undular-type bores is proposed. The model 

equation is based on the regularized long wave equation that includes an 

additional Burgers term to account for the effects of the dissipation of energy 

caused by internal viscosity and bottom friction. Exact solutions in the form of a 

kink-profile for the evolution equation using the hyperbolic tangent method are 

derived analytically. A numerical solution procedure based on the method of lines 

is also presented. The exact solution is used to specify initial data for the incident 

tsunami waves in the numerical model. Several errors are monitored in order to 

assess the conserved properties and the numerical scheme. Numerical simulations 

of tsunamis ascending in rivers as an undular bore are also presented. 

  

  

Introduction 

 

Tsunami coastal effects include penetration of the tsunami waves into rivers and 

estuaries. Tsunami waves travel through these coastal waters until their energy is totally 

dissipated. Tsuji et al. (1991) mentioned that during the 1983 Japan Sea Tsunami, the waves 

travelled into several river systems. The tsunami wave advance through the rivers occurred in 

two different forms: either as a strong bore or in the form of an undular bore. 

 

 Following Tsuji et al. (1991), these two different forms are schematically illustrated in 
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Fig. 1. The authors mentioned that a strong bore appears as a step with a flat water surface behind 

it, whereas an undular bore consists of an initial wave, followed by a train of smaller waves. 

 

 
 

Figure 1.    Schematic of a strong bore (a) and of an undular bore (b) (Tsuji et al., 1991). 

 

 In the present study, only the undular bore structure is considered. Two different methods 

used to obtain the solution are presented: an analytical one and a numerical solution of the equal 

width (EW) wave equation, making use of the method of lines (MOL) with an adaptive grid. 

 

Hydrodynamics of Bores 

 

 According to Johnson (1970, 1972), the surface profile of a bore in a viscid fluid is given 

by the following equation: 
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where η  is the height of the water surface, t is time, x is the direction of propagation, p 

represents internal or bottom friction and β  is a dispersion parameter. In the ideal case of zero 

viscosity, the asymptotic solution of Eq. (1) is a solitary or a cnoidal wave. 

Pelinovskii (1982) used a general form of the KdV-Burgers equation and showed that the 

following equation can be used: 
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Here, 
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where D is the water depth and ( )ηF  is a friction function. 
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 Chester (1966) showed that the velocity profile follows a parabolic distribution in a 

Poiseulle flow for a viscid fluid. The water surface can be approximated by a hyperbolic tangent 

equation in both the up and downstream directions. Under certain conditions, the bore assumes 

the form of an Airy function. For some recent work on modelling of tsunami undular bores, see 

Yaacob et al. (2008). 

 

Analytical Solution 

 

 Hamdi et al. (2005) developed analytical solutions that can be used as input for numerical 

models for application to the propagation of tsunami waves in river systems in the form of 

undular bores. They proposed a new model equation for simulating both undular-type and non 

undular-type bores. The model equation is based on the regularized long wave equation (RLW) 

that includes an additional Burgers term to account for the effects of the dissipation of energy 

caused by internal viscosity and bottom friction. Exact solutions in the form of a kink-profile for 

the evolution equation using hyperbolic tangent method are derived analytically. A numerical 

solution procedure based on the method of lines is also presented. The exact solution is used to 

specify initial data for the incident tsunami waves in the numerical model. Several error measures 

are monitored in order to assess the conserved properties and the numerical scheme. Numerical 

simulations of tsunamis ascending in rivers as an undular bore are presented. 

 The Korteweg-de Vries (KdV) equation, 0t x xxxu uu u+ + = , is a well-known nonlinear 

partial differential equation (PDE) originally formulated to model unidirectional propagation of 

shallow water gravity waves in one dimension; it describes the long time evolution of weakly 

nonlinear dispersive waves of small but finite amplitude. 

 Because of its role as a model equation in describing a variety of physical systems, and 

because of its interesting mathematical properties, the KdV equation has been widely 

investigated in recent decades. As early as the 1960s, it was discovered that the KdV equation 

forms a completely integrable Hamiltonian system and admits an infinite number of conservation 

laws and invariants of motion (see Miura et al., 1968). An important property of the completely 

integrable system is the exact interactions of its solitary wave solutions which retain their original 

shapes and speeds after collision and exhibit only a small overall phase shift. These special 

solitary waves are named solitons and their clean interactions are called elastic interactions. 

 More recently, similar models to the KdV equation have been proposed. Benjamin et al. 

(1972) advocated that the PDE, 0t x x xxtu u uu uµ+ + − = , modeled the same physical 

phenomena equally well as the KdV equation, given the same assumptions and approximations 

that were originally used by Kortweg and de Vries (1895). This PDE is now often called the 

regularized long wave equation, although it is also known as the Benjamin, Bona and Mahoney 

(BBM) equation. The dispersive term uxxt confers more practical mathematical properties to the 

RLW equation and therefore makes it a preferable model to the KdV equation. The RLW 

equation also has explicit second-power hyperbolic secant (sech
2
) solitary wave solutions, but it 

is a non-integrable system since small dispersive effects can be observed when its solitary wave 

solutions collide. 

 Hamdi et al. (2004b) presented exact solitary wave solutions for general types of the 

RLW equation with nonlinear terms of any order p, 0
p

t x xxtu au u uµ+ − = . The solutions were 

obtained by integrating a first order nonlinear ordinary differential equation (ODE) with symbolic 

computation using the mathematical software Maple. In their study, they first showed how this 



approach could also be applied to derive the exact solutions for the classical generalized 

Korteweg–de Vries (gKdV) equation, which includes a nonlinear term of any order p and a cubic 

dispersion term, that is, 
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 By coupling this gKdV equation with the quintic regularized long wave (qRLW) 

equation, which includes fifth order dispersion, a new evolution equation called the gKdV-

qRLW equation is obtained; this equation can model the effects of a high order singular 

perturbation (in the limit ε→0) to the gKdV equation, 
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 Exact solitary wave solutions for this new model equation are derived in Hamdi et al. 

(2005). These analytical and explicit solutions are obtained for any p, µ and ε. The approach 

presented in Hamdi et al. (2005) is general and can also be applied to find exact solitary wave 

solutions for similar nonlinear wave equations such as KdV-like and Boussinesq-like equations 

(see Hamdi et al. 2004a, 2004b). The exact solitary wave solutions can be used to specify initial 

data for the incident waves in the numerical model and for the verification of the associated 

computed solutions (Hamdi et al. 2001). Analytical expressions for three conservation laws and 

for three invariants of motion for solitary wave solutions of this new equation are also derived 

Hamdi et al. (2005). The invariants of motion can be used as verification tools to investigate the 

conservation properties and performance of numerical schemes for the approximate solution of 

this new class of PDEs. More details on the derivation of the exact solutions can be found in 

Hamdi et al. (2005). 

 

Numerical Model 

 

 Hamdi et al. (2001) developed numerical solutions of the EW wave equation using an 

adaptive method of lines (MOL). As part of the input to the numerical model, the analytical 

solutions discussed in the previous section were used. They then applied this numerical solution 

to the formation of an undular bore. This approach is quite relevant for propagation of tsunami 

waves in rivers. 

 In this section, the numerical solution is briefly addressed. The EW wave equation is a 

model PDE for the simulation of one-dimensional wave propagation in media with non-linear 

wave steepening and dispersion processes. 

 Hamdi et al. (2001) solved the EW wave equation by using an advanced numerical MOL 

with an adaptive grid, whose node movement is based on an equidistribution principle. These 

authors presented several numerical solutions to illustrate important features of the propagation 

of a solitary wave, the inelastic interaction between two solitary waves and the development of 

an undular bore. The KdV equation shown below, 

 

 0t x xxxu uu u+ + =  (6) 

 

is the first classical nonlinear PDE that has been successful for the description of wave 



propagation with nonlinear wave steepening and dispersion effects. On the other hand, Benjamin 

et al. (1972) suggested that the following equation, 

 

 0t x x xxxu u uu uµ+ + − =  (7) 

 

can reproduce the same physical processes, just as well as the KdV equation, provided the same 

assumptions and approximations as in the KdV equation are made. Eq. 7 is now generally 

referred to as the RLW equation. 

 Whereas the KdV equation can be solved by analytical methods for some particular 

problems, and also in general by the inverse scattering transform (IST) technique, and also by 

spectral methods (SMS), the RLW and EW equations cannot be solved by the IST. However, the 

RLW, EW wave and KdV equations can be solved through numerical methods, such as the 

MOL. The EW wave equation can be written as: 

 

 0t x xxtu uu uµ+ + =  (8) 

 

 The main numerical difficulty in solving this equation is due to the dispersive term, uxxt. 

This term couples the space and time derivatives. Hamdi et al. (2001) solved Eq. 8 by using an 

advanced MOL with adaptive gridding. The details of this technique and the numerical solutions 

can be found in Hamdi et al. (2001). 

 

Formation of an Undular Bore 

 

 Following Hamdi et al. (2001), the formation of an undular bore is now briefly described. 

A long wave, with a gradually and monotonically sloped front, can propagate in deep water 

without significant change in shape, when the nonlinear effects of steepening are balanced by 

dissipation and dispersion. However, as a long wave travels into shallow water, the smoothly 

varying front can steepen further, and this type of a steepening wave is called a bore. Ocean tides 

can produce large bores (e.g., with amplitudes of 3m) that propagate upstream in river channels 

and attract bore watchers. When the surface elevation of the water behind a long bore is less than 

0.28 times the water depth in front, the steepening front of a bore that is initially smoothly 

varying will develop surface ripples that grow into a train of large oscillations or undulations, and 

this type of wave is called an undular bore. 

 The new equation given by Eq. 8 is solved with 1 6µ = by the MOL described in the 

previous section. Numerical results from the MOL solution of the EW wave equation with 

1 6µ = are given first in the form of a time-distance diagram in Fig. 2 for the reduced spatial 

interval [-20,46], which is the main part of the entire computational domain [-20,55]. The front 

of the initially smooth bore begins to steepen as it propagates to the right, and this front 

eventually breaks into an ever-increasing number of undulations, one after the other, forming 

what is called an undular bore. This bore continues to advance in space and time as a train of 

oscillatory waves. A close observation of the formation of each undulation will reveal that its 

peak amplitude increased from an initial value of 0.10 for the initial bore to a somewhat larger 

amplitude at larger distances and times. This train of undulatory waves carries the mass, 

momentum, and energy of the initial bore forward in space and time. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.    Formation of an undular bore. 

 

 A clearer view of the cross-section of the undular bore is presented in Fig. 3, where three 

spatial distributions at the times t = 0s, 300s, and 600s are depicted.  

 

 

Figure 3.    Cross-sections through an undular bore. 

 



 An adaptive grid with a large number of nodes is required to obtain an accurate solution 

at later times because of the increasing number of undulations. For the computational time 

interval of [0,800], the use of 401 grid nodes is more than sufficient, as can be seen by the node 

distribution in the undulations at the later time of t = 600s. The grid nodes are well clustered in 

regions of large gradients and curvatures. Note that only every second node is shown for clarity. 

The invariants of motion were calculated during the numerical computations to help verify if the 

solution is computed accurately. The exact values were reproduced and remained constant to four 

significant digits. This provides more assurance that the solution is computed accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.    Amplitude growth and trajectory of the leading wave of an undular bore. 

 

 The increase in peak amplitude with time of the leading wave of the undular bore and the 

corresponding slightly concave trajectory are both shown in Fig. 4. The peak amplitude of this 

leading wave can be clearly seen to increase rapidly at first from the initial value of 0.10 of the 

original bore, and then it rises more slowly to what appears as an asymptotic limit that is at least 

0.182. The trajectory of the peak amplitude of the leading wave accelerates, more quickly at 

smaller times and then asymptotically to a final speed. The slope of the trajectory at later times, 

which is the asymptotic speed of the leading wave, is about 0.061, which is about one-third of the 

peak amplitude. 

 

Summary and Conclusions 

 

 An advanced numerical method of lines for solving the equal width equation on uniform 

and adaptive grids was used to illustrate the formation of an undular bore. Observations show 

that tsunami waves can propagate upstream in coastal estuarine and river systems in the form of 

either a regular bore or an undular bore. The numerical simulation tools, that the authors 

developed based on the method of lines, can be used to perform a rapid forecast of tsunami 

propagation in rivers and prediction of water levels and amplification effects of bores. These 

tools will provide a better planning of river or channel walls of both sides of a stream to prevent 

water overflow into residential areas along the river banks. The model presented in this study can 

be used by river engineers to produce tsunami inundation maps and evacuation plans of riverside 

areas. 



References 

 
Benjamin, T. B., J. L. Bona, and J. L. Mahoney, 1972. Model equations for long waves in nonlinear 

dispersive media, Philosophical Transactions of the Royal Society of London, Series A, 272, 47-48. 

 

Chester, W., 1966. A model of the undular bore on a viscid fluid, Journal of Fluid Mechanics, 24, 367-

377. 

 

Hamdi, S., W. H. Enright, Y. Ouellet, and W. E. Schiesser, 2004. Exact solutions of extended Boussinesq 

equations, Numerical Algorithms, 37, 165-175. 

 

Hamdi, S., W. H. Enright, W. E. Schiesser, and J. J. Gottlieb, 2004. Exact solutions and invariants of 

motion for general types of regularized long wave equations, Mathematics and Computers in Simulation, 

65, 535-545. 

 

Hamdi, S., W. H. Enright, W. E. Schiesser, and J. J. Gottlieb, 2005. Exact solutions and conservation 

laws for coupled generalized Korteweg-de Vries and quintic regularized long wave equations, Nonlinear 

Analysis, 63, 1425-1434. 

 

Hamdi, S., J. J. Gottlieb, and J. S. Hansen, 2001. Numerical solutions of the equal width wave equations 

using an adaptive method of lines, in: A.V. Wouwer, P. Saucez and W.E. Schiesser (Eds.), Adaptive 

Method of Lines, Chapman & Hall/CRC Press, Boca Raton, Florida, U.S.A, 65-116. 

 

Johnson, R. S., 1970. A nonlinear equation incorporating damping and dispersion, Journal of Fluid 

Mechanics, 42, 49-60. 

 

Johnson, R.S., 1972. Shallow water waves on a viscid fluid - The undular bore, Journal of Fluids, 15, 

1693-1699. 

 

Korteweg, D. J., and G. de Vries 1895. On the change of form of long waves advancing in a rectangular 

canal and a new type of long stationary wave, Philosophical Magazine Series 5, 39, 422-443. 

 

Miura, R. M., C. S. Gardener, and M. D. Kruskal, 1968. Korteweg-de Vries equation and generalizations. 

II. Existence of conservation laws and constants of motion, Journal of Mathematical Physics, 9 (8), 

1204-1209. 

 

Pelinovskii, Y.N., 1982. Non-linear dynamics of tsunami waves, Institute of Applied Physics, Gorkii, 

Academia Nauk, U.S.S.R. (in Russian), pp. 54. 

 

Tsuji, Y., T. Yanuma, I. Murata, and C. Fujiwara, 1991. Tsunami ascending in rivers as undular bore, 

Natural Hazards, 4, 257-266. 

 

Yaacob, N., N. M. Sarif, and Z. Abdul Aziz, 2008. Modeling of Tsunami waves, Matematika, 24 (2), 

213-230. 

 


