
 
INFLUENCE OF SPECTRAL NONSTATIONARITY ON STRUCTURAL DAMAGE  

 
 

S.D. Koduru1  
 
 

ABSTRACT 
 
 Spectral nonstationarity is the time dependent evolution in the frequency content 

of an earthquake ground motion. The traditional earthquake demand measures 
such as the response spectra and the Fourier amplitude spectra do not consider 
this time dependent variability in the frequency content. Hence, the ground 
motions based solely on these measures may underestimate the nonlinear 
response of a structure. This study demonstrates that the relative lag in the arrival 
time of the low frequency waves would increase the structure damage. The 
structural damage is measured in terms of cumulative damage indices, which 
include the effect of duration and the number of load cycles. The numerical 
example with a six storey reinforced concrete frame illustrates the increment of 
damage due to the effect of spectral nonstationarity.  

  
  

Introduction 
 
 The earthquake ground motions form a critical component of the performance-based 
earthquake engineering (PBEE) due to its emphasis on the evaluation of inelastic behaviour of 
the structures.  In most cases, the earthquake ground motion records satisfying the criteria of 
earthquake magnitude, distance, source characteristics, geology, and site-soil conditions are 
scarce. Consequently, in order to select ground motions, the following two approaches are 
commonly employed; 1) ground motion records are scaled such that their response spectra match 
a “design spectrum” or a “uniform hazard spectrum,” 2) artificial ground motions are simulated 
based on stochastic models.  
 
 In the first approach, the emphasis is to match the amplitude of frequency content in a 
ground motion record to the design level. This approach is valuable for predicting the peak 
elastic response of the structure. However, it does not consider the time dependent factors within 
the earthquake ground motions such as, duration and the evolution of the frequency content, 
which may significantly affect the inelastic response of the structure.  
 
 For the second approach, the stochastic models may broadly be categorized as “source-
based” and “site-based” (Rezaeian and Der Kiureghian 2008). In the source-based stochastic 
models, the focus is yet again on the amplitude of the frequency content of the ground motions. 
These models include only the variation of earthquake intensity with time, known as “temporal 
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nonstationarity.” The time dependent variation of the frequencies, known as “spectral 
nonstationarity,” is not explicitly modeled. Thus, most of these models result in stationary 
frequency content in the ground motions. The site-based stochastic models, on the other hand, 
focus on representing the temporal and spectral nonstationarity observed in the ground motion 
records.  
 
 The spectral nonstationarity occurs partly due to the irregular rupturing of the earthquake 
faults and partly due to arrival of the high frequency seismic waves at a location earlier than the 
low frequency waves. In the nonlinear response range, the natural frequency of the structure 
decreases as it loses stiffness. The low frequency content at the end of ground motion would then 
potentially increases the damage of the structure due to the moving resonance effect (Conte 
1992).  
 
 In the present study, the effect of the spectral nonstationarity on the structural damage is 
investigated with cumulative damage indices. This differs from the previous studies that focus on 
the influence of spectral nonstationarity on inelastic displacement response (Conte 1992), 
strength reduction factors (Mukherjee and Gupta 2002), peak response parameters (Wang et al. 
2002, Cao and Friswell 2009), and collapse time (Todorovska et al 2009). Moreover, the 
parameters of the hysteretic material models that amplify the spectral nonstationarity effects are 
identified.  
 
 In the following, the quantitative measures for spectral nonstationarity and the parameters 
to simulate ground motions with spectral nonstationarity are discussed. Next, the hysteretic 
material models, cumulative damage measures and the “damage spectra” for the ground motions 
with stationary and nonstationary frequency content are presented. Finally, the influence of 
spectral nonstationarity on the structural damage of a six storey building is studied.  
 

Spectral Nonstationarity Measures 
 
 For the time-frequency decomposition of a ground motion, signal processing methods 
such as short-time Fourier transform, chirplet-based signal approximation, and wavelets are 
well-known. In particular, the wavelet methods have gained popularity for their representation of 
energy variation in time-frequency plane. In recent years, the wavelet methods are explored for 
ground motion simulation models and nonstationarity representation (Iyama and Kuwamura 
1999, Mukherjee and Gupta 2002, Cao and Friswell 2009, Todorovska et al. 2009). 
Alternatively, unwrapping phase spectra of the well-known Fourier transform provides another 
measure of spectral nonstationarity. It represents the lag in the arrival times of various 
frequencies at the recording site. The phase differences are widely used to characterize the 
relative arrival times of various frequencies (Shrikand and Gupta 2001, Thrainsson and 
Kiremidjian 2002).  
 
 In the present study, the “envelope delay” proposed by Boore (2003) is utilized as a 
measure of spectral nonstationarity. The envelope delay is the derivative of phase with respect to 
frequency and is interpreted as the arrival time of seismic waves. Thus, envelope delay presents 
an intuitive measure of nonstationarity. Moreover, it is computed employing only the Fourier 
transforms and without unwrapping the phase.  



 
 If h(t) represents a ground motion record, H(f), its Fourier transform and G(f) is the 
Fourier transform of t.h(t) with t as time and f as frequency, then the envelope delay, te(f) is 
(Boore 2003) 
 

 2

)(I)(I)(R)(R
2
1)(

A
GHGH

df
dfte

⋅+⋅== φ
π

 (1) 

 
where φ is the phase, R(H) and I(H) are the real and imaginary parts of H(f), R(G) and I(G) are 
the real and imaginary parts of G(f), and A is the Fourier amplitude of f. Fig. 1 shows the 
envelope delays plotted with frequencies in log scale for the ground motion records of 
Northridge earthquake (090 component,116th St School station), and Loma Prieta earthquake (00 
component, APEEL 7-Pulgas station) (the ground motion records are obtained from 
http://peer.berkeley.edu/nga/). Evidently, the Northridge record displays longer envelope delays 
for low frequency content compared to the Loma Prieta record.  
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Figure 1. Envelope delays for the Northridge earthquake record and the Loma Prieta earthquake 

record 
 
 A bilinear curve, called “mean envelope delay,” is fitted to the envelope delays in Fig. 1 
to compare the nonstationarity of the two records. For frequencies less than 1Hz, the slope of the 
mean envelope delay for the Northridge record is -2.65, while the slope for the Loma Prieta 
record is -0.172. Therefore, the higher slope indicates longer delays in the arrival of the low 
frequency content. Thus, the slope for the frequency content less than 1Hz provides a 
quantitative measure of comparison for the spectral nonstationarity. 



Ground Motion Model 
 
 A review of the stochastic models with temporal and spectral nonstationarity is presented 
in Koduru (2008). In the present study, the stochastic model proposed by Li and Der Kiureghian 
(1995) is employed. It represents the ground motion as a summation of several filtered Gaussian 
white noise processes. The discretized form of the simulated ground motion, x(t),  is then 
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where qk(t) is a modulating function that controls the variation of intensity of a stationary process 
sk(t) over time, t. The stationary process is simulated as,  
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where yki is a standard normal random variable, which represents a pulse in the Gaussian white 
noise process, and hk(t-ti) represents an impulse response function, which acts as a filter with 
frequency, ωk and damping ratio, ξk. Thus, sk(t) represents a stationary process with a dominant 
frequency ωk and band width controlled by ξk. Modulating functions are able to take a number of 
functional forms to control the temporal evolution of stationary processes. Each modulating 
function is associated with a stationary process and hence with a unique filter.  
 
 The calibration of ωk, ξk. and qk(t), to a ground motion record would enable to simulate 
an ensemble of ground motions with Eq. (2). Following the calibration procedure outlined in 
Koduru (2008), the parameters of the stochastic model are assessed for the Loma Prieta 
earthquake record. Five filters are chosen with dominant frequencies, 0.33Hz, 1.59Hz, 2.50Hz, 
5.19Hz and 53.13Hz, and with damping ratios as 0.1 for the first two filters and 0.2 for the rest 
of them. Initially, the modulating functions corresponding to each filter are calibrated as piece-
wise linear functions. For the first two filters, which represent the low frequency content, the 
modulating functions are then modified to represent triangular function. The triangular 
modulating function is fully defined by only four parameters, which are, arrival time, peak 
amplitude, the location of peak amplitude and the duration. Thus, the sensitivity of structural 
response to each of the parameter could be easily illustrated. In this paper, the study is confined 
to the influence of the arrival times on the structural damage. Fig. 2 shows the five modulating 
functions corresponding to each filter.  
 
 Employing the parameters in Fig. 2, a set of 100 ground motions is simulated with the 
stochastic model in Eq. (2). This is termed as “Model 1” in the paper for easy reference. Another 
set of 100 ground motions is simulated with 5s delayed arrival time for the modulating function 
of 0.33Hz filter. This is termed as “Model 2” in the paper. All the simulations are passed through 
a high pass filter corresponding to the high pass filter of the target ground motion record. The 
simulated ground motions based on Model 2 should exhibit higher spectral nonstationarity than 
the ground motions based on Model 1 due to the delay in the arrival time.  
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Figure 2. Modulating functions for the ground motion simulations 
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Figure 3. a) Envelope delay of simulations of Model 1 (recorded arrival time) and Model 2 

(delayed arrival time); b) Mean response spectra for the simulations of Model 1 and 
Model 2.  

(a) (b) 



 Fig. 3a illustrates the average envelope delays of the 100 simulations of Models 1 and 2. 
The simulations of Model 2 have the average slope as -0.3552, while slope for the simulations of 
Model 1 is -0.1451. As expected, the simulations of Model 2 exhibit higher spectral 
nonstationarity compared to those of Model 1. Fig. 3b shows the average response spectra of the 
simulations of Models 1 and 2. The amplitude of the pseudo spectral acceleration is expressed in 
the units of g, acceleration due to gravity. The response spectra from both of the models are 
practically same, expect in the long period region. This is due to the delay in the arrival time of 
the low frequency (long period) content. As the arrival time is delayed, the location of peak 
amplitude for the modulating function with the 0.33Hz (3s period) filter no longer coincides with 
the peak amplitudes of the rest of the modulating functions. Thus, the maximum intensity of the 
low frequency content is slightly reduced.  
 

Structural Damage Measures  
 
 In the present study, three cumulative damage models are considered. The cumulative 
damage indices are based on 1) hysteretic energy dissipated (Kratzig et al. 1985), 2) plastic 
rotations (Mehanny and Deierlein 2001), and 3) a combination of hysteretic energy and peak 
deformation (Park and Ang 1985). In addition, the peak inter-storey drift ratio (lateral 
displacement/height) is considered as a non-cumulative measure for comparison.   
 
 A single-degree-of-freedom (SDOF) system is modeled with reinforced concrete section. 
The mass of the system is varied to alter its natural period, while maintaining 5% damping. The 
section is square with 200mm dimension and 3000mm height. The compressive strength of 
concrete is taken as 28MPa, while the yield strength of steel is 500MPa with a post-yield 
stiffness ratio of 5%. The 640 mm2 area of steel is evenly distributed. The system is initially 
modeled as a the fiber-discretized section with individual fibers for concrete and reinforcing 
steel, This system is analyzed with the simulated ground motions based on Models 1 and 2.  
 
 Fig. 4 shows the “damage spectra” for the cumulative damage indices and the peak inter-
storey drift ratio. As the delayed frequency content is 0.33Hz (3.0s period), the differences 
between Model 1 (solid line) and Model 2 (dotted line) are pronounced after the 3.0s period. It is 
evident in Figs. 4b, 4c and 4d that the longer periods undergo greater cumulative damage due to 
the spectral nonstationarity. In contrast, in Fig. 4a, the peak inter-storey drift ratio predicts higher 
damage for Model 1 when the period is longer than 4.5s. This indicates that the peak drift ratio 
may not reliably detect the influence of spectral nonstationarity on the structural damage.  
 
 In order to study the effect of hysteretic material model, the cross-section is also modeled 
with a tri-linear ‘Hysteretic’ material model in OpenSees (Mazzoni et al. 2009). The input values 
for the tri-linear hysteretic model are obtained from the section analysis. The system is analyzed 
with the same simulated ground motions as above.  Figs. 5a and 5b show the damage spectra of 
the tri-linear hysteretic model with no stiffness degradation, and with the unloading stiffness 
degradation based on the ductility, respectively.  The Mehanny-Deierlein (M-D) damage index is 
employed (Mehanny and Deierlein 2001). A comparison of Figs. 4c, 5a, and 5b clearly indicates 
that the section model with unloading stiffness degradation is most sensitive to the spectral 
nonstationarity. Thus, elastic-perfectly plastic models, with no stiffness degradation, may not 
consistently reveal the damage increment due to the spectral nonstationarity.  
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Figure 4.  Variation of damage with the natural period of SDOF, a) Peak inter-storey ratio, b) 

Energy based damage index, c) Plastic rotations based damage index, d) Combined 
deformation and energy damage index. Solid line represents simulation from Model 1 
(recorded arrival time) and dotted line represents the simulation from Model 2 
(delayed arrival time).   
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Figure 5. Damage spectra for hysteretic model with a) no stiffness degradation, b) unloading 
stiffness degradation 
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Numerical Example 
 
 A six storey reinforced concrete building in Vancouver, Canada is considered to illustrate 
the effects of spectral nonstationarity. The finite element model of the three-bay six-storey 
structure is shown in Fig. 6a. The section properties, design details and gravity loads are 
available in CPCA concrete design handbook (CPCA 1998). All the elements are modeled as 
nonlinear beam-column elements with fiber-discertized cross-sections in OpenSees (Mazzoni et 
al. 2009). The cross-sections are modeled with separate uniaxial material models for confined 
concrete, unconfined concrete, and reinforcing steel. A nonlinear dynamic analysis is performed 
with the simulated ground motions shown in Fig. 6b. As the same white noise variables, yi, are 
employed in both the models, the simulated ground motions differ only in the arrival time of the 
low frequency content.  
 

 
 
Figure 6. a) Finite element model of the six storey structure; b) Simulated ground motions with 

Model 1 (recorded arrival time) and Model 2 (delayed arrival time) 
 
 The cumulative damage in each member is computed as the Mehanny-Deierlein (M-D) 
damage index (Mehanny and Deierlein 2001). Fig. 7 shows the increment in the damage for the 
four columns in the first storey. It is evident that the ground motion with delayed arrival time 
causes higher damage. Especially in Fig. 7a, the left exterior column accumulates higher damage 
during the first 30s of the loading for Model 1 (solid line). However, after 30s, the intensity is 
practically zero for Model 1 and hence, there is no noticeable increase in the damage. In contrast, 
the damage continues to increase after 30s for Model 2 (dotted line) due to the presence of low 
frequency content.  
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Figure 7. Evolution of M-D damage index with time in the first storey for, a) left exterior 
column, b) left interior column, c) right interior column, d) right exterior column; 
Solid line represents simulation from Model 1 (recorded arrival time) and dotted line 
represents the simulation from Model 2 (delayed arrival time).   

   
Conclusions 

 
 This study indicates that the structural damage is sensitive to the arrival time of the low 
frequency content. Further research is required to understand the sensitivity of the structural 
damage to other measures of spectral nonstationarity, such as the location of peak amplitude, and 
the energy concentration. Additionally, the results indicate that the peak response measures and 
elastic-perfectly plastic section models may be inconsistent in detecting the vulnerability of a 
structure to the spectral nonstationarity.  
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