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ABSTRACT  

 This paper proposes a new concept of intrinsic frequency and a new analysis 
method for non-stationary signals based on it. Intrinsic frequency is an inherent 
characteristic of a signal. This paper gives the mathematic derivation of it, 
followed by two examples of continuous signals. The results are compared with 
theoretical frequencies, Fourier transform, instantaneous frequencies based on 
Hilbert transform, and instantaneous frequencies based on Hilbert Huang 
Transform. This new method provides new physical insight into the non-
stationary, nonlinear phenomena than any other existing methods. The examples 
show that the intrinsic frequency has clear physical meanings and indicates the 
exact locations of the local maxima and local minima. It actually corresponds to a 
local fitting of the signal data into harmonic functions. The analysis method based 
on intrinsic frequency is thus very adaptive to the data, and provides local 
properties of the data. This method can be applied to a wide spectrum of 
challenging problems in earthquake engineering, including analysis of near-fault 
ground motion time histories, nonlinear structural responses, structural health 
monitoring, and post-disaster evaluation of existing structures by non-destructive 
methods.     

Introduction 
 
 Signal processing is at the heart of many earthquake engineering problems. Analysis 
methods of stationary signals have been well established, especially those based on Fourier 
transforms (see Shinozuka 1991, Soong and Grigoriu 1992). But analysis of nonstationary signals 
has been a challenge. Both the magnitude and the frequency contents of nonstationary signals are 
varying with time. Fourier Transform, which is relied heavily on by traditional signal processing, 
decomposes the signal into many sinusoidal waves with fixed frequency and amplitude extending 
to infinity, thus can not disclose the time-varying nature of the signal and yields many spurious 
harmonics that do not have physical meaning.  
 In earthquake engineering, analysis methods for nonstationary signals are especially 
needed. First of all, the earthquake ground motions are nonstationary. In particular, the long 
duration acceleration pulses observed in many near-fault earthquake records have been shown to 
cause serious structural damage (Somerville, et al 1997). Analysis of such ground motions has to 
rely on methods of nonstationary signals so as to understand the effects of the long duration pulses. 
On the other hand, structural responses can also be nonstationary, either due to the nonstationary 
earthquake ground motions, or due to inelasticity or nonlinearity of the structure system itself. A 
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good tool to analyze such nonstationary responses can help us better identify the system behavior, 
so as to perform structural health monitoring, damage evaluation, and structural control. 
 Contrary to the frequency concept in Fourier transform, frequency of a nonstationary signal 
changes instantly and locally. A full oscillation is no longer needed to define the frequency value. 
Frequency can change between oscillations (inter-wave oscillation); it can also change within an 
oscillation (so called intra-wave frequency modulation, a hallmark of nonlinearity, traditionally 
regarded as harmonic distortion). For analysis of nonstationary signals, the methods need to reveal 
the local feature of the signal, and be very adaptive to the data. A global representation of the data, 
such as the power spectral density generated by Fourier Transform, is not very useful.  
 If a signal can be expressed in the following form 

                                                   (1) 
where   is a constant, then FM(t) is the theoretical frequency (modulation) function that describes 
the signal’s frequency change with time , and AM(t) is the theoretical amplitude (modulation) 
function that describes the signal’s amplitude change with time.  
 A rough way to estimate the FM(t) functions is by counting zero crossings, and AM(t) by 
spline fitting of the maxima or minima. This approach is only applicable to simple waveforms and 
yields only rough estimates (Yeh and Wen 1990).  
 Another method is by Hilbert transform. Taking Hilbert transform of    
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in which P indicates Cauchy principal value, one can form an analytical function  
                                                                          (3) 

It can be further expressed in the form of  
                                             (4) 

Where    is usually called the instantaneous amplitude. 
  represents a phase angle, which is equal to  . Taking derivative of the 

phase angle, a frequency is calculated.  
                                                            (5) 

 is usually called instantaneous frequency. For more details, please see Bendat and Piersol (2000). 
 However, most signals are so complicated that such a simple treatment yields nothing 
meaningful. Cohen(1995) limited the simple treatment to mono-component signals. For lack of a 
precise definition of the mono-component signal, “narrow-band” was adopted as a limitation on the 
data (Schwartz et al. 1966).  
 Huang, et al (1998) further developed a sifting procedure (i.e. empirical mode 
decomposition, EMD) to decompose complicated signals into simpler forms (i.e. intrinsic mode 
functions, IMF), then use the treatment to each of the IMFs, then form a Hilbert spectrum by 
plotting the instantaneous frequency and amplitude functions of all the IMFs together. The 
approach is called Hilbert Huang transform (HHT). HHT has been widely used in earthquake 
engineering since its introduction in 1998, from analysis of earthquake sources (Zhang et al 2003), 
to generation of three-directional near-fault uniform hazard ground motions (Gu and Wen 2007, 
Wen and Gu 2004), to structural system identification (Yang and Lei 2000), etc. In HHT, each IMF 
has to satisfy two conditions to ensure its simplicity; however, even so, the instantaneous frequency 
and amplitude are still not the theoretical ones, due to Bedrosan and Nuttul theorem, see Huang 
(2005).   



 In this paper, a new concept called “intrinsic frequency” is defined and a new method based 
on it is proposed for analysis of nonstationary signals. The intrinsic frequency is not necessarily 
equal to the theoretical frequency; however, it certainly is a useful and meaningful characteristic of 
the signal. As can be seen later in this paper, for continuous functions, for many cases, it has clear 
physical meanings and indicates the exact locations of the maxima and minima. For discrete 
functions, it is actually a local fitting of the data into harmonic functions. The method is thus very 
adaptive to the data, and provides local properties of the data. 
 Good results and new insights have been obtained by applying the new method to various 
data: from continuous wave functions, to the numerical results of the nonlinear equation systems, to 
discrete data from real world. Application to real data from a shake table test on a bridge pier 
showed clear indication of structural damage that corresponded well to observations. Since signal 
processing is at the heart of many engineering problems, this study most likely will turn out to be a 
great contribution to overcome many engineering challenges. However, exploration of the full 
physical interpretation of the “intrinsic frequency” for complicated data has just begun. There are 
still some difficulties and limitations of the method. Due to the length limit, only two examples of 
continuous signals are presented here; more examples and discussions will be presented in other 
papers.  
 In this paper, the intrinsic frequency is first defined; then, two examples of continuous 
signals are given. The intrinsic frequency is compared with Fourier transform, theoretical 
frequency, instantaneous frequency, and the results from HHT. The physical meaning and merits of 
the intrinsic frequency are clearly shown.  
 

Mathematic Definition of Intrinsic Frequency 
 
 Given a time series  one first obtains its Hilbert Transform  then forms an 
analytical function as in Equation (3).  

Figure 1 Illustration of Intrinsic Frequency Definition 
  
 The analytical function is a curve on phase plan X-Y. Figure 1 shows an arbitrary curve 
on phase plane. For each point on the curve, find its center of curvature , and 



consequently, the radius of curvature , and the angle , which is the angle that the 
normal to the curve makes with the x-axis. Figure 1 also shows an arbitrary point P on the curve, 
the osculating circle at point P, the center of curvature C1 , the angle , and the radius 
of curvature . From the figure, it is clear that Equation (3) can be rewritten as  

                                               (6) 
Then we continue doing this for the phase plane curve , and we can 

decompose the signal as  
                                     (7) 

Continue doing this, we get 
 

� 
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We define intrinsic frequency as  

  for i=0, 1 ,2,…n                                                      (9) 

For any plane curve (x(t), y(t)), we have  

                                                                       (10) 
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Substituting these equations into Equation (6), one can find that 

                                                                     (13) 

Similarly, 

                                                                (14) 

Substituting Equations (10) and (11) into Equation (14), one can find that  
 

By the same token, we have 
  for i=1, 2, …n.                                                   (15) 

Thus we have 
                                                                    (16) 

 Since this is the unique function of the curve, we call it the intrinsic frequency function. 
From now on, we will denote it as . It is an important and useful descriptor of the curve 
and thus the time series data (signal), as we will see in the following examples. And from now 
on, we will denote  as . And since  



  
Equation (13) can also be written as 

 
It is related to the angle used in the definition of instantaneous frequency, but on the 

signal , instead of .  
Let us find out its physical meaning. From Equations (9), (13), and (12), we can obtain 

that  

                                                                                    (17) 

where 
                                                                                (18) 

From Equation (17), we can see that (t) is the angular velocity of the point 
rotating on the osculating circle around the instantaneous center of curvature. This is the physical 
meaning of the intrinsic frequency. 

On the other hand, let us look at the instantaneous frequency defined in Equation (5). It 
can be proved that 

                                                                 (19) 

It does not have clear physical meaning; it is not even equal to , i.e., the 

angular velocity of the point rotating around the origin of the phase plane.   
Now let us look at the result of the new analysis method, Equation (8). The real part of 

the equation becomes: 

                                    (20) 
In this expression, , , , … can be regarded 
as components of the signal, and  can be regarded as the residue. The new signal 
processing method can be regarded as a new way to decompose the signal into a series of 
components. Each component has the same frequency function, alternating phase angle, but 
different amplitude function. 

Equation (20) can also be rewritten as 
                                                          (21) 

Where 
                                                (22) 

                                                                                    (23) 

Expressed in the form of Equation (21),  can be regarded as a signal with a DC-term  
and a AC-term with amplitude  and frequency . Please note that in Equation 
(21),  is a function of time.   is the derivative of  only, not the 
derivative of , which is fundamentally different from the definition of the 



theoretical frequency. Equation(21) is the most general form of a sinusoidal wave that fits the 
data locally at time t, because all the four parameters that completely describe a sinusoidal wave: 
the DC term, the amplitude, the frequency, the initial phase angle, are all functions of t, i.e. are 
local at time t. Nothing is global, nothing is fixed beforehand, thus this expression is very 
adaptive to the data, and reveals the true local properties of the data.  

 
Examples of Continuous Signals 

 
Example 1: Superimposition of Two Sinusoidal Waves  
 Let us look at an example first:  
 A segment of the curve is shown in Figure 2.  can also be written as 

 
 Its Hilbert transform   is   

Figure 2 Beat Phenomenon (red line is the time series data, black line is cos(�) function) 
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Figure 3 Intrinsic Frequency (black line) (red line is at 4.5 ) 

 
 Since the frequencies of the two sinusoidal waves are close to each other, a phenomenon 
called Beat Phenomenon will occur, i.e. the amplitude of the signal will vary periodically. From 
the theoretical point of view,  is the amplitude modulation function, and  is the 
theoretical frequency. The instantaneous frequency based on Hilbert Transform will yield the 
same result to us. Since the data is already an IMF for HHT, the HHT result is also the same.  
The new method in this paper offers an entirely different, yet very interesting and useful view of 
the data. The intrinsic frequency function is shown in Figure 3. It shows a peak around t=1, 
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instead of a flat straight line at . Looking at the data  in Figure 1, it is clear that visually, 
the frequency near t=1 is much higher than other places. Actually, the distances between the 
local maxima are [0.4380    0.4190    0.2860    0.4190], and the distances between the local 
minima are:[ 0.4350    0.3460    0.3460]. Obviously, the frequency is not a constant, not as the 
theoretical or instantaneous frequency suggested. Figure 2 also shows the function form of 

. We can see that the local extrema of this curve are at the exact locations of 
the extrema of the original curve , showing that the intrinsic frequency function correctly 
describes the uneven spacing between local maxima/minima.  
 Although the traditional point of view is a powerful tool for understanding beat 
phenomenon, it completely fails to describe the local variation of the spacing between 
peaks/valleys. As we discussed before, the local features are of great importance to the analysis 
of non-stationary, nonlinear data. If we do Fourier transform to this data, the result will disclose 
the two frequency components,  , and . Although this information is very 
useful, it does not give any information of the local variation, which is important for our 
purpose. 

Now let us look at the general case . Since 

,. the theoretical frequency and 
instantaneous frequency of these signals are both .  Their intrinsic frequency function can 

be derived as . The maximum 

value of the intrinsic frequency is ( , and the minimum is . 

Thus the intrinsic frequency is always greater than the theoretical frequency or the instantaneous 
frequency of .  

When  and  are close to each other, beat phenomena will occur, such as the 
previous example . On the other hand, when the two frequencies 
are far from each other, i.e., when , the intrinsic frequency is approximately , 
whereas the theoretical frequency and instantaneous frequency are both approximately . This 
is a big difference. Figure 4 shows a segment of  along with its 
two component sinusoidal waves  and . We can see that the waveform is 
basically , drifted up and down according to .  

Figure 4 Signal of  (in blue) and its Two Components (in red 
and green, respectively) 

 
The theoretical frequency and instantaneous frequency of 0.55*  do not have any clear 

physical meaning. On the other hand, the intrinsic frequency is about  (varying between 
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0.92*  and 1.1* ), conforming with the waveform. Again, the intrinsic frequency yields the 
exact locations of the local extrema, and the best local fitting of the data into sinusoidal 
waveform.  
 
Example 2: Involute of a Circle 

Let us look at function: . A segment of the function is shown in 
Figure 5. Its Hilbert transform is . 

0 5 10 15 20 25

-20

-15

-10

-5

0

5

10

15

20

 

Figure 5 Involute of a Circle Along with the Curve sin(t) 
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Figure 6 Phase Plane Curve of Involute of Circle 

On phase plane, it is an involute of a unit circle, see Figure 6. Image there is a string 
wound on the circle and a pen is attached at the open end of the string. Now pull the pen to 
unwind the string from the circle, the trace of the pen point is the curve that we are studying.  



The intrinsic frequency turned out to be . It is the frequency of the line 
rotating around the instantaneous rotation center, i.e. the tangent point of the line to the circle at 
the time instant. Thus it has clear physical meaning.  

Further, we have , ,  for i=2, 3,…, and . So the new data 
analysis method yields two components, the first component,  is actually the 
term , whereas the second component, , is actually the term . 
Here . The first component describes the movement of the rotating line 
as if it were rotating around the origin; whereas the second component is the circle. The two 
components are perpendicular with each other (90 degree out of phase), the vector sum is . 
Both the two components rotate at the same angular speed, which is . The 
decomposition is physically meaningful. No other method can disclose so much information of 
the physical process or yield the constant angular speed.  

For example, the Fourier transform cannot be applied to this signal, as it is clearly not 
stationary, and the Fourier transform will yield many meaningless superficial harmonic waves.  

The instantaneous frequency defined by Hilbert transform can be derived as 
. It begins from 0 at t=0 and approaches 1 as t approaches to infinity. It 

does not have obvious physical meaning. The instantaneous amplitude function is 
, which is equal to .  

Since  is already an IMF, the Hilbert Huang Transform is reduced to Hilbert 
transform and yields the same result as above.  

Since  can also be written as , we have 
 and . Again, the theoretical frequency does not 

have clear physical meaning, and the theoretical amplitude is the same as . 
Figure 5 also shows the curve , i.e. a constant-amplitude harmonic wave whose 

frequency function is the intrinsic frequency. We can see (and prove mathematically) that the 
extrema of the curve occur at the exactly same time instants as those of . If we construct a 
similar constant-amplitude harmonic wave, but use the instantaneous frequency or the theoretical 
frequency as the frequency function, the extrema of the curve will not occur at the same time 
instants as the extrema of . This further proves the correctness and usefulness of the intrinsic 
frequency.  
 

Conclusions 
 
 This paper proposes a new concept of intrinsic frequency and a new analysis method of 
nonstationary signals based on it. As is demonstrated by the examples in the paper, intrinsic 
frequency is a useful and meaningful inherent characteristic of the signals. It has clear physical 
meanings and indicates the exact locations of the local maxima and minima. Compared with 
theoretical frequencies, Fourier transform, instantaneous frequencies based on Hilbert transform, 
and instantaneous frequencies based on Hilbert Huang Transform, intrinsic frequency provides 
us with new physical insight into the non-stationary, nonlinear phenomena that no other existing 
methods can provide. The new analysis method for nonstationary signals is very adaptive to the 
data, and provides local properties of the data. This method has also been applied to numerical 
results of nonlinear equation systems and discrete data from real world, and good results have 
been obtained. Wide applications of this method can be found in earthquake engineering, 



including analysis of near-fault ground motion time histories, analysis of nonlinear structural 
responses, structural health monitoring, active structural control, and post-earthquake evaluation 
of existing structures by non-destructive methods. 
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