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ABSTRACT 
 
 The seismic hazard in the Central and Southeastern United States has gained 

widespread attention in recent years. Due to the lack of available recorded strong 
ground motions in the region, the earthquakes used in many analytical studies of 
the region’s infrastructure have typically been synthetic. This paper investigates 
the difference in the response of a bridge typical to this region due to two 
different suites of ground motions. The first suite is comprised of synthetic 
earthquakes from the New Madrid Seismic Zone and the second suite of ground 
motions is comprised primarily of recorded ground motions from previous events 
in southern California. This study focuses on developing two sets of fragility 
curves for a three-span continuous steel girder bridge using 3-D analytical models 
and nonlinear time-history analyses. Comparing the component and system 
fragility curves allows for an evaluation of the vulnerability of the bridge subject 
to the two distinct hazards. 

 
Introduction 

 
The New Madrid and Wabash Valley seismic zones are located along the Mississippi 

River and stretch from Arkansas and Tennessee north to Indiana and Illinois.  During the years 
of 1811 and 1812, four of the largest earthquakes to have occurred in the continental United 
States took place in a matter of three months in this region. Three of the earthquakes are 
estimated to have had magnitudes ranging from 7.8 to 8.1 on the Richter scale. While there have 
not been earthquakes of magnitude 6.0 or greater in over a hundred years, the threat of large 
earthquakes in the future exists. According to some researchers, there is a 90% probability that a 
magnitude 6 or 7 earthquake will occur within the next fifty years (Hildenbrand et al. 1996). 
Until the early 1990’s, there were no modern seismic design codes in the region, so the current 
stock of highway bridges, which has an average age of more than 38 years old (Wright et al. 
2009), is particularly vulnerable to sustaining excessive and widespread damage during a repeat 
large seismic event. As knowledge of the seismic hazard in the central and southeastern United 

                                                 
1 Graduate Research Assistant, School of Civil & Environmental Engineering, Georgia Institute of Technology, 
Atlanta, GA 30332 
2 Professor & Associate Chair, School of Civil & Environmental Engineering, Georgia Institute of Technology, 
Atlanta, GA 30332 
3 Assistant Professor, Dept.of Civil & Environmental Engineering, Rice University, Houston, TX 77005 

 

 

Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering
                                                   Compte Rendu de la 9ième Conférence Nationale Américaine et
                                                                10ième Conférence Canadienne de Génie Parasismique
                                                         July 25-29, 2010, Toronto, Ontario, Canada • Paper No 1562



States (CSUS) has grown, the need for seismic evaluations of structural systems in the region has 
been highlighted.  

 
The scarcity of empirical data of earthquake damage in the CSUS requires that risk 

assessments in the region be analytically based. Fragility curves represent the probability of 
exceeding predetermined damage states of a structure conditioned against a ground motion 
intensity measure and have become an important tool in assessing the seismic vulnerability of 
highway bridges in regions of moderate seismicity. Analytical fragility curves have been 
formulated through a variety of means, including elastic spectral response (Jernigan and Hwang 
2002), nonlinear static analysis (Mander and Basoz 1999), and nonlinear time history analyses 
(Nielson and DesRoches 2007; Mackie and Stojadinovic 2001; Karim and Yamazaki 2003). 
Although it is the most computationally intensive, performing nonlinear time history analyses is 
typically the most reliable method of developing these fragility functions. Arising from a lack of 
recorded strong ground motions in the CSUS, recent analytically based fragility curves for 
bridges in the CSUS have typically been generated using synthetic ground motions (Hwang et al. 
2000; Choi et al. 2004; Nielson and DesRoches 2006). The work presented herein subjects a 
deterministic bridge to two suites of ground motions – one from the New Madrid Seismic Zone 
(synthetic) and one from Los Angeles (recorded and synthetic) – and corresponding system 
fragility curves are developed for both cases. By comparing the system fragility curves for the 
two earthquake portfolios, this paper will investigate the difference in seismic vulnerability of a 
deterministic bridge due to two distinct seismic hazards, one in the central US (synthetic), and 
one on the west coast (primarily recorded).  

 
Deterministic Bridge Characteristics 

 
The bridge that is chosen for the analytical modeling is a ‘typical’ three-span continuous 

steel girder bridge. This bridge type, as its name suggests, has continuous steel girders over the 
bents. The three equal length spans are 30.3 m long (100 ft) and 15 m wide (49.5 ft). The spans 
are supported by 520 mm (20.5 in) tall fixed steel bearings at one end and by 520 mm (20.5 in) 
tall steel rocker bearings at the opposite end. The two bents are each supported by three 
reinforced circular concrete columns that have a diameter of 900 mm (36 in) and a height of 4.6 
m (15 ft). The columns are reinforced longitudinally with 12- #29 bars and are reinforced 
transversely with #13 bars at 305 mm (12 in) on center. The two bent beams are 1.07 m (42 in) 
wide and 1.22 m (48 in) deep with 6- #29 and 9- #29 reinforcing bars placed in the top and 
bottom respectively. There are also 2-# 16 reinforcing bars placed longitudinally along either 
side of the section and #16 stirrups spaced at 305 mm (12 in). A detailed schematic of the bridge 
is shown in Figure 1. It should be noted that while there are a number of other bridges that could 
be modeled, the selection of the bridge itself is not of key importance to the goals of this study. 
Ultimately a comparison of the bridge response due to the two different suites of ground motions 
is desired. 
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Figure 1.    Basic layout of the bridge 
 

Analytical Modeling of the Bridge 
 
A detailed analytical model that accounts for material and geometric nonlinearities in the 

bridge is developed in the OpenSEES platform (McKenna and Fenves 2005). The columns and 
bent caps are modeled using fiber sections. These fiber sections directly model the longitudinal 
steel, and can represent the transverse reinforcing by modeling different properties for the 
confined versus unconfined concrete. The effect of the confinement is determined using the 
confined concrete model developed by Mander et al. (1988). Because the superstructure of the 
bridge will remain linearly elastic during an earthquake event, the bridge deck is modeled using a 
single girder (spine) model. Elastic beam-column elements are used to model the deck, and the 
dynamic deck mass is appropriately lumped at the nodes along the centerline of the bridge. The 
steel bearings are modeled based on experimental tests performed by Mander et al. (1996). By 
modeling the bearings with zero-length elements that combine the behavior of a steel material in 
parallel with a hysteretic material, the complex behavior of the bearings is accurately modeled. 
Following the analytical modeling method outlined in Nielson and DesRoches (2007), the 
abutments and abutment piles are modeled by a combination of linear and nonlinear springs in 
parallel. The analytical model used is illustrated in Figure 2. 

The orthogonal components of each ground motion are applied to the bridge model 
simultaneously and a complete nonlinear time history analyses is performed. One component of 



the ground motion is applied to the bridge along its principal longitudinal axis and the other 
orthogonal component is applied in the transverse direction. By applying two dimensional 
ground motions to the three-dimensional bridge model, a more realistic representation of the 
seismic demand on the bridge is observed.  All material and geometric variabilities are ignored in 
this study so that a better comparison of the ground motion suites and their influence on the 
bridge vulnerability may be investigated. 

 

 
 

Figure 2.    Schematic of important modeling considerations (Nielson and DesRoches 2007)   
 

Ground Motion Suites and Characteristics 
 
While selecting ground motion suites, the objective was to use two well established suites 

of ground motions which are commonly used in performing seismic analyses of structures in the 
CSUS and on the west coast. The west coast ground motion suite used is the SAC suite for Los 
Angeles. This set of ground motions contains thirty pairs of orthogonal ground motion records. 
The probabilities of exceedance for the thirty ground motions are evenly split between 2%, 5%, 
and 10% in 50 yrs. The ground motions range in PGA from 0.14g to 1.28g, and have epicentral 
distances ranging from 1km to 107km. 

 
For the New Madrid region, a suite of forty-eight synthetic ground motions is used. These 

forty-eight ground motions are selected from a portfolio of 220 scenario earthquakes developed 
for the Memphis, TN region by Rix and Fernandez. The magnitudes of the synthetic earthquakes 
range from 5.5 to 7.5, while the epicentral distances range from 10km to 100km. These ground 
motions are decomposed into two orthogonal components using the procedure developed by 
Baker and Cornell (2006). The geometric mean of the PGA values of the orthogonal components 



varies between 0.03g and 0.74g.  The mean response spectra for the two earthquake portfolios 
are plotted in Figure 3. 
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Figure 3.    Mean response spectra for the two ground motion suites (5% damping) 
 

PSDMS and Fragility Curve Formulation 
 

Fragility curves in this study are based on full nonlinear time history analyses which aid 
in the estimation of the seismic demand placed on the bridges and their components. Fragility 
curves consider the probability that the seismic demand (D) placed on the structure exceeds the 
capacity (C) conditioned on a chosen intensity measure (IM) representative of the seismic 
loading.  D and C are assumed to follow lognormal distributions and the probability of reaching 
or exceeding a specific damage state can be estimated using the standard normal cumulative 
distribution function, defined as, 
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where, Sd  is the median estimate of the demand as a function of IM, Sc is the median estimate of 
the capacity, βd/IM  is the dispersion or logarithmic standard deviation of the demand conditioned 
on the IM, βc is the dispersion of the capacity and Ф(·) is the standard normal cumulative 
distribution function. Equation (1) can be evaluated by developing a probability distribution for 
demand conditioned on a chosen IM, commonly known as the probabilistic seismic demand 
model (PSDM), and convolving it with the capacity distribution. The median demand, Sd can be 
expressed as a power function (Cornell et al. 2002): 
 
 ( )bd IMaS =                  (2) 
where, a and b are regression coefficients. A linear regression of the demand – IM pairs 
determines the values of a and b. A set of analytical 3-D models is subjected to a suite of n 
ground motions and in each case the peak demand measures (such as column curvature ductility, 



bearing and abutment deformations) are recorded. The dispersion of the demand conditioned on 
IM is given by, 
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 The bridge is then analyzed for each ground motion using non-linear time history 
analysis and the maximum component responses are recorded in each case. The components 
considered in this study are columns, steel fixed and expansion (rocker) bearings and abutments 
(both active and passive as well as transverse). This study formulates fragility curves for the 
bridge for four different ground intensity measures: peak ground acceleration (PGA), spectral 
acceleration at the geometric mean of the first two periods (Sa-gm), spectral acceleration at the 
first natural period (Sa-T1) and spectral acceleration at the second natural period (Sa-T2). The most 
efficient parameters investigated are PGA and Sa-gm, and the fragility curves considering those 
two intensity measures are the only two presented herein. Fig. 4 shows demand plots for the 
expansion bearings in the longitudinal direction of PGA and Sa-gm respectively.   
 

The summary of the PSDMs for all components of the bridge analyzed with the Rix-
Fernandez suite and SAC-Los Angeles suite as functions of PGA are given in Table 1, where R2 
is the coefficient of determination indicating the accuracy of fit. From the R2 values in Table 1, it 
is evident that the transformed data for the Rix-Fernandez ground motion has a much better 
linear fit than the corresponding data from the SAC-Los Angeles suite.  
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Figure 4.    PSDMs for lateral displacement demand of steel expansion (rocker) bearing a) as a 

function of PGA for Rix-Fernandez suite and b) as a function of Sa-gm for the SAC-
Los Angeles suite  

 
 
 
 
 



Table 1.    PSDM parameter estimates for various components (based on PGA) 
 

 
Component 

Rix-Fernandez SAC-Los Angeles 
a b βd/PGA R2 a b βd/PGA R2 

Column  3.79 2.11 0.63 0.90 3.11 1.78 0.82 0.60 
Fixed steel bearing-longitudinal 0.55 0.88 0.42 0.78 -.07 0.22 0.12 0.53 
Fixed steel bearing-transverse 4.64 2.42 1.10 0.80 4.66 2.45 0.80 0.75 
Steel rocker bearing-longitudinal 5.88 1.28 0.50 0.84 5.28 0.72 0.33 0.60 
Steel rocker bearing-transverse  5.91 2.42 0.78 0.89 5.52 1.99 0.56 0.80 
Abutment - passive  5.12 2.62 1.30 0.76 4.68 2.80 1.59 0.50 
Abutment - active  0.51 0.53 0.24 0.79 0.20 0.23 0.15 0.45 
Abutment - transverse 2.25 0.69 0.27 0.84 1.84 0.14 0.10 0.39 

 
Component Limit States 

 
 The components considered in this study are columns, fixed and expansion bearings and 
abutments (both active and passive).The component limit states are also assumed to be 
lognormally distributed. The median, Sc and the dispersion, βc values of the limit states are 
obtained from experimental results. The study uses four damage states, slight, moderate, 
extensive and complete, comparable to those found in HAZUS-MH. Table 2 below summarizes 
the limit state values for the various components. Further details regarding the limit states can be 
found in the work by Nielson and DesRoches (2007).  
 

Table 2.    Bridge component limit states 
 
 

Component 
Slight Moderate Extensive Complete 

Sc βc Sc βc Sc βc Sc βc 
Column (µ) 1.29 0.59 2.10 0.51 3.52 0.64 5.24 0.65 
Fixed steel bearing-long (mm) 6 0.25 20 0.25 40 0.47 186.6 0.65 
Fixed steel bearing-(trans) (mm) 6 0.25 20 0.25 40 0.47 186.6 0.65 
Steel rocker bearing-(long) (mm) 37.4 0.60 104.2 0.55 136.1 0.59 186.6 0.65 
Steel rocker bearing-(trans) (mm) 6 0.25 20 0.25 40 0.47 186.6 0.65 
Abutment - passive (mm) 37.0 0.46 146.0 0.46 N/A N/A N/A N/A 
Abutment - active (mm) 9.8 0.70 37.9 0.90 77.2 0.85 N/A N/A 
Abutment - trans (mm) 9.8 0.70 37.9 0.90 77.2 0.85 N/A N/A 

 
 

Component and system fragility curves 
 

 Having estimated the demand and capacity parameters, the fragility curves for various 
bridge components can be obtained based on the formulation given in Equation (1). The system 
level fragilities are formulated using the joint probabilistic seismic demand model (JPSDM) as 
outlined in the work by Nielson and DesRoches (2006). The JPSDM is developed by assessing 
the demands placed on each component (marginal distribution) through a regression analysis as 
in the case of PSDMs. The covariance matrix is assembled by estimating the correlation 



coefficients between the demands placed on the various components. A Monte Carlo simulation 
is then used to compare realizations of the demand (using the JPSDM defined by a conditional 
joint normal distribution) and statistically independent component capacities to calculate the 
probability of system failure across a range of intensity measures and for each damage state. This 
procedure is repeated for each level of IM for each of the damage states. Regression analysis is 
used to estimate the lognormal parameters, median, λ and standard deviation or dispersion, ζ, 
which characterize the bridge system fragility.  
 
Table 3.    Summary median and dispersion values (in g) of component fragilities using PGA as  

     the indexed intensity measure.  
 
 Slight Moderate Extensive Complete 
Component GM λc ζc λc ζc λc ζc λc ζc 

Column 
Rix 0.186 0.409 0.235 0.384 0.300 0.425 0.363 0.429 

LA 0.201 0.568 0.264 0.543 0.353 0.585 0.441 0.588 
Fixed 

bearing 
(longit.) 

Rix N/A N/A N/A N/A N/A N/A N/A N/A 

LA N/A N/A N/A N/A N/A N/A N/A N/A 

Fixed 
bearing 
(transv.) 

Rix 0.307 0.456 0.506 0.456 0.674 0.486 1.278 0.520 

LA 0.311 0.343 0.508 0.343 0.674 0.380 1.263 0.421 

Expansion 
bearing 
(longit.) 

Rix 0.171 0.609 0.381 0.578 0.470 0.600 0.601 0.639 

LA 0.102 0.948 0.417 0.885 0.603 0.931 0.933 1.008 

Expansion 
bearing 
(transv.) 

Rix 0.182 0.338 0.299 0.338 0.398 0.377 0.754 0.419 

LA 0.153 0.309 0.280 0.309 0.397 0.369 0.863 0.432 

Abutment 
(passive) 

Rix 0.562 0.528 0.949 0.528 1.977 0.497 1.977 0.497 

LA 0.683 0.590 1.115 0.590 2.213 0.567 2.213 0.567 

Abument 
(active) 

Rix N/A N/A N/A N/A N/A N/A N/A N/A 

LA N/A N/A N/A N/A N/A N/A N/A N/A 

Abutment 
(transv.) 

Rix 1.036 1.083 N/A N/A N/A N/A N/A N/A 

LA N/A N/A N/A N/A N/A N/A N/A N/A 

 
The fragility curves for the bridge components are not explicitly shown; however, Table 

3 summarizes the component median, λc, and component dispersion values, ζc, for the 
component fragilities due to both portfolios of ground motions (considering PGA as the intensity 
measure). For the components that were found to be not seismically vulnerable – defined as 
having median value larger than 4.0 g – the values were replaced with the designation “N/A”. 
Accordingly, it was found that the abutment was typically not vulnerable to sustaining damage 
actively or in the transverse direction, and the fixed bearing was not vulnerable in the 
longitudinal direction for either ground motion suite. It is noteworthy that the use of the LA suite 



of ground motions led to higher variability of the component fragilities in almost every instance. 
The Rix and Fernandez ground motions lead to a higher vulnerability in the components in 
almost every instance, with the only clear exception being the steel expansion bearings in the 
transverse direction.  
 
 Table 4 below summarizes the median and dispersion of the lognormal system wide 
fragility curves for both suites of ground motions, with the intensity measures being PGA and Sa-

gm. The fragility curves are plotted for a visual representation in Figure 5, with the solid lines 
representing the results from the SAC-LA suite and the dashed lines representing the fragility 
curves due to the Rix-Fernandez suite. From Table 4 and Figure 5, it is apparent that the bridge is 
more vulnerable to the suite of synthetic CSUS ground motions except for the slight damage 
state. Again, there is also slightly more variability associated with the west coast ground 
motions. While PGA as an intensity measure leads to lower variability via the dispersion values, 
the ratios of dispersion values, ζ, to median values, λ, are smaller when Sa-gm is the chosen 
intensity measure. 
 

Table 4.     Median and dispersion values for system-wide fragility curves. 
 
 
Intensity measure (IM) 

Slight Moderate Extensive Complete 
λ  ζ λ ζ λ ζ λ ζ 

SAC- Los Angeles         
PGA (g) 0.081 0.669 0.224 0.452 0.289 0.496 0.399 0.560 
Sa-gm (g) 0.154 0.736 0.449 0.462 0.582 0.513 0.803 0.581 
Rix and Fernandez         
PGA (g) 0.138 0.423 0.220 0.372 0.272 0.397 0.341 0.421 
Sa-gm (g) 0.207 0.515 0.379 0.520 0.476 0.544 0.612 0.602 
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Figure 5.    System fragility curve for the two portfolios of ground motions  

 
Conclusions 

 



 This paper presents an analytical method for the development of fragility curves of a 
deterministic three-span continuous steel girder bridge subject to two portfolios of ground 
motions – one comprised of synthetic earthquakes for the central United States and the other 
comprised of primarily recorded ground motions for the LA area. The curves are the product of a 
set of full nonlinear time history analyses of the 3-D analytical model subjected to two 
orthogonal components of each ground motion. The fragility analyses accounts for the 
vulnerability of various bridge components including the columns, abutments, and bearings. 
Furthermore, the component limit states are consistent with those used by Nielson and 
DesRoches (2007). The fragility analysis shows that the bridge – on both a component and 
system level – is more seismically vulnerable to the suite of Rix and Fernandez ground motions 
than the portfolio of Los Angeles ground motions. While this statement may hold true for this 
single deterministic bridge model, it can be neither generalized nor applied to other bridge types 
without further studies. 
 

References 
 
Baker, J. and Cornell, A. C. (2006). Which Spectral Acceleration Are You Using?, Earthquake Spectra, 

22(2). 
Choi, E., DesRoches, R., and Nielson, B. (2004). Seismic Fragility of Typical Bridges in Moderate  

Seismic Zones, Engineering Structures, 26(2), 187–199 
Cornell, A. C., Jalayer, F., Hamburger, R. O., and Foutch, D. A. (2002). Probabilistic basis for 2000 SAC 

Federal Emergency Management Agency steel moment frame guidelines, Journal of Structural 
Engineering, 128, 526-532. 

Hildenbrand, T.G., Griscom, A., Van Schmus, W.R., and Stuart, W.D. (1996). Quantitative investigations  
of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith  
intersecting the New Madrid seismic zone. Journal of Geophysical Research B: Solid Earth 101 
(B10), 21921-21942 

Hwang, H., Liu, J. B., and Chiu, Y.-H. (2000). “Seismic Fragility Analysis of Highway Bridges.” Report  
No. MAEC RR-4, Center for Earthquake Research Information. 

Jernigan, J. B. and Hwang, H. (2002). Development of Bridge Fragility Curves. 7th US National  
Conference on Earthquake Engineering. Boston, Mass. EERI. 

Karim, K. R. and Yamazaki, F. (2003). “A simplified method of constructing fragility curves for highway  
bridges.” Earthquake Engineering and Structural Dynamics, 32(10), 1603–1626. 

Mackie, K. and Stojadinovic, B. (2001). “Probabilistic Seismic Demand Model for California Bridges.”  
Journal of Bridge Engineering, 6(6), 468–480. 

Mander, J. B., Priestley, M. J. N., and Park, R., 1988. Theoretical stress-strain model for confined  
concrete, Journal of Structural Engineering, 114(8), 1804-1826. 

Mander, J. B., Kim, D. K., Chen, S. S., and Premus, G. J. (1996). “Response of Steel Bridge Bearings to  
the Reversed Cyclic Loading.” Report No. NCEER 96-0014, NCEER. 

Mander, J. B. and Basoz, N. (1999). “Seismic Fragility Curve Theory for Highway Bridges.” 5th US  
Conference on Lifeline Earthquake Engineering, Seattle, WA, USA. ASCE. 

McKenna, F. and Fenves, G. L. (2005). Open System for Earthquake Engineering Simulation Pacific  
Earthquake Engineering Research Center, Version 1.6.2. 

Nielson, B. G. and DesRoches, R. (2006). Seismic fragility methodology for highway bridges, St. Louis,  
MO, United States, American Society of Civil Engineers. 

Nielson, B. G. and DesRoches, R. (2007). Analytical seismic fragility curves for typical bridges in the  
central and southeastern United States. Earthquake Spectra 23(3): 615-633. 

Wright, T, DesRoches, R., and Padgett, J.E. (2009). Bridge Seismic Retrofitting Practices in the  
Central and Southeastern US. Journal of Bridge Engineering, In Press 


