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ABSTRACT 
 
 An assessment of the statistics of peak displacement ductility demand aimed at 

developing simple equations for estimating ductility demand of structures under 
bidirectional seismic excitations is carried out for idealized inelastic 2-degree-of-
freedom systems. The hysteretic behavior of the structural system is represented 
by the Bouc-Wen model with biaxial interaction. Based on the dynamic analysis 
results, it was concluded that in general the ductility demand under bidirectional 
seismic excitations are much higher than that under unidirectional excitations. 
Therefore, underestimation of the damage and seismic risk is likely to occur if the 
effect of bidirectional excitations is ignored. Simple approximate equations are 
proposed for estimating the ductility demand and normalized dissipated hysteretic 
energy. These approximations used the results of unidirectional excitations for 
single-degree-of-freedom systems. Nonlinear dynamic responses obtained for the 
considered records suggest that the proposed approximations are adequate. The 
results also shown that the ductility demand under bidirectional excitations can be 
modeled by a lognormal or Frechet variate, depending on the vibration period, 
and that the coefficient of variation of ductility demand under bidirectional 
excitations is comparable to that obtained under unidirectional excitations. 

  
 

Introduction 
 
 Statistics of the maximum inelastic displacement of a structure under seismic excitations 
are needed for an efficient quantitative seismic risk assessment of structures.  The statistics used for 
such an assessment (ATC 2005, FEMA/NIBS 2003, Goda and Hong 2008) are often based on an 
equivalent single-degree-of-freedom (SDOF) system subjected to uni-directional excitation; while 
structures are subjected to multidirectional excitations are likely to be affect at least by the two 
orthogonal horizontal ground excitations. The impact of the bidirectional seismic excitations on 
the inelastic responses was considered by Yeh and Wen (1990), and by De Stefano and Faella 
(1996).  The later was focused on bilinear hysteretic 2-degree-of-freedom (2DOF) system, 
representing a single column or an idealized symmetric one-story building with a rigid deck 
supported by identical columns.  However, statistics of ductility demand with strength/stiffness 
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degrading behavior and simple empirical equations for estimating the ductility demand are 
lacking. 
 The main objectives of the present study are to investigate statistics of the peak ductility 
demand, and to develop empirical equations to estimate ductility demand of structures under 
bidirectional seismic excitations.  The structure is idealized as inelastic 2DOF systems with 
hysteretic behavior represented by the Bouc-Wen model with biaxial interaction (Park et al. 
1986, Yeh and Wen 1990, Wang and Chang 2007). For the analyses, 381 California records from 
31 seismic events selected from the Next Generation Attenuation Database (PEER Center, 2006) 
was employed.  Details on the formulation, analyses and results are given in the following 
sections. 
 

Structural Model 
 

 To evaluate the structural response under bi-directional excitations, a 2DOF Bouc-Wen 
hysteretic model is considered and shown in Figure 1.  Similar to De Stefano and Faella 1996, it 
is viewed that the model can be used to represent a single column or an idealized symmetric one-
story building with a rigid deck supported by identical columns under bidirectional excitations.  
The governing equations of motion along the X and Y axes for the considered model are (Park et 
al. 1986), 
 
 gxxxxxxxx umzkukucum &&&&& −=α−+α++ )1(  (1a) 
and, 

 gyyyyyyyy umzkukucum &&&&& −=α−+α++ )1(  (1b) 
 
where k, c, z, and gu&&  are the stiffness, damping coefficient, hysteretic displacement and ground 
acceleration, respectively, the subscript x  and y are used to indicate that the quantities are 
associated with X- and Y-axis respectively. 
 

 
 
Figure 1.    Two-degree-of-freedom hysteretic system subject to bidirectional seismic excitation. 
 

For orthotropic system, kx and ky can differ and/or the yield displacements Δx and Δy, may 
not be equal.  In such a case, the system can be transformed into an equivalent isotropic system 



(Park et al. 1986), with the displacements denoted by ux, zx, uy1 and zy1, where, 
 
 yyxyyyy qQQqzzuu )/(  and , , y111 =⋅Δ=⋅Δ=  (2) 
 
in which yx ΔΔ=Δ / , qy=αkyuy+(1-α)kyzy; the yield strength along the Y-axis Qy = kyΔy. 
 The transformed displacement uy1 and hysteretic displacement zy1, and ux and zx are 
governed by the following coupled equations (Park et al. 1986, Wang and Wen 2000), 
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in which bnE ,1 ηδ+=η  and the parameter δη controls the stiffness degradation; bnE ,1 νδ+=ν , 
and the parameter δν  controls the strength degradation; Εn,b represents the normalized dissipated 
hysteretic energy for biaxial responses, which will be discussed in the following. 
 The definition of the dissipated hysteretic energy for biaxial responses was given by Park 
et al. (1986), Yeh and Wen (1990) and Wang and Chang (2007).  These definitions are focused 
on n = 2.  To define Εn,b for different n values, let u and z denote the displacement and hysteretic 
displacement, respectively, for a displacement path along the Θ-axis, defined by a line passing 
through the origin in ux and uy1 plane with a counterclockwise rotation angle θ from ux-axis.  It 
can be shown, 
 

 )sin(  and  ),cos( 1 θ=θ= uuuu yx  (4a) 
and, 

 )sin(  and  ),cos( 1 θ=θ= zzzz yx  (4b) 
 
By substituting Eq. (4) into Eqs. (3a) and (3b), it can be shown that each of these equations 
reduces to, 
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and represents uniaxial Bouc-Wen hysteretic model.  If A=1 and δν = 0, it can be shown that the 
yield displacement along the Θ-axis (in the ux and uy1 plane), Δθ, is given by, 
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Figure 2.    Surface at yield defined by isotropic biaxial Bouc-Wen model and response time-
history for a selected record. 

 
 This equation shows the yield displacement along different directions could differ.  If n 
equals 1, the surface at yield becomes a rhombus, implying a very significant interaction for the 
biaxial yield responses.  If n equals 2, the surface at yield is a circle, representing equal yield 
capacity along any direction.  The interaction may not be significant and could be ignored, if n is 
greater than about 5 since the surface at yield approach to a square.  An illustration of the surface 
at yield as well as corresponding response time-history for a record is shown in Figure 2 for n 
equal to 1, 2 and 5. The surfaces at yield represented by n between 1 and 2 are commonly 



employed in structural analyses for a column (Takizawa and Aoyama 1976, MacGregor 1998, 
De Stefano and Faella 1996). 
 Since the normalized dissipated hysteretic energy for the uniaxial response is defined as a 
quantity that is proportional to the integration of the product of the normalized hysteretic 
displacement and the normalized velocity, by extending this definition for biaxial responses Εn,b, 
can be written as, 
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where zv  represents the vector of hysteretic displacement that equals ( )1  , yx zz , and u

v
&  represents 

the velocity vector ( )1  , yx uu && .  Substituting Eq. (6) into (7a) results in, 
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where zx, zy1, xu& , 1yu&  and )/(tan 1

1
xy uu−=θ  are time-varying variables.   

 For n equal to 2.  Eq. (7b) reduces to, except a constant, those used by Park et al. (1986), 
Yeh and Wen (1990), and Wang and Wen (2000). 
 

Ductility Demand 
 
 Since the trajectory of the displacement of the mass of the system in terms of ux and uy1 
can be expressed in terms of (θ, uθ(t)), where 
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one could introduce a normalized peak displacement under bidirectional excitations, μb,max 
defined by, 
 
 ( )θθ Δ=μ /)(maxmax, tub . (9) 
 
This definition and Eq. (6) leads to,  
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Note that μb,max > 1  represents the peak ductility demand for the system under bidirectional 
excitations, while μb,max < 1 simply indicates that the maximum displacement is less than the 
yield displacement.  Eq. (10) suggests that μb,max may be approximated by, 
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where ( )xxxb u Δ=μ /maxmax,  represents the normalized peak displacement along the X-axis, and 

( )yyby u Δ=μ /maxmax,  represents the normalized peak displacement along the Y-axis.  
Alternately, μb,max may be approximated by μb,ap, 
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where max,xμ  denotes the normalized peak displacement along the X-axis if the excitations and 
responses along the Y-axis are ignored, and max,yμ  denotes the normalized peak displacement 
along the Y-axis if the excitations and responses along the X-axis are ignored.  Use of Eq. (13) is 
justified since max,xμ  and max,yμ  rather than max,xbμ  and max,ybμ  are likely to be available.  The 
adequacy of these approximations is to be assessed in the following. 

To facilitate the parametric studies of the system described previously, it is noteworthy 
that for a given ground motion record with its recording axes coincide with the structural axes, 
one could evaluate the peak linear elastic displacement responses d0x and d0y, and relate the 
inelastic displacements Δx and Δy of the system in terms of the normalized yield strength φx and 
φy, 
 

 xxxxxx dd 00  and ,/ φ=ΔΔ=φ  (13a) 
and, 

 yyyyyy dd 00  and,/ φ=ΔΔ=φ  (13b) 
 
such that the evaluated displacements are related to the normalized yield strength φx and φy.  d0x 
and d0y can be calculated using Eq. (6) with α set equal to 1.0. 
 

 
 
Figure 3.    Orientation of the strong ground motion recording axes verses structural axes. 
 



 The orientation of the recording sensors may not coincide with structural axes, as shown 
in Figure 3.  To investigate this orientation effect on ductility demand, the excitations along the 
structural axes, denoted by gxu&&  and gyu&& , can be expressed as  
 
 Ψ+Ψ= sincos 0,0, gygxgx uuu &&&&&&  (14a) 
and 
 Ψ+Ψ−=Ψ cossin 0,0,, gygxgy uuu &&&&&&  (14b) 
 
where Ψ is defined in Figure 3, and 0,gxu&&  and 0,gyu&&  denotes the recorded ground motions. 
 

Numerical evaluation of ductility demand  
 

 To assess μb,max (see Eq. (10)), a set of 381 California records from 31 seismic events 
(Goda et al. 2009) is considered.  The criteria used for selecting the records are detailed in Hong 
and Goda (2007) and Goda et al. (2009).  To illustrate the effect of the responses with and 
without the effect of biaxial interaction on the estimated responses, the normalized 
displacements μx,max, μy,max, μxb,max, μyb,max, and μb,max of a reference case (or Case 1) whose 
parameters are summarized in Table 1 are obtained by solving the governing equations, and the 
ratios rx = μxb,max/ μx,max, ry = μyb,max/μy,max, rap =μb,max /to μb,ap and rb-u =μb,max/max(μx,max, μy,max), 
are calculated using the response time-history for each record. 
 
Table 1.     Structural parameters for the considered cases, and mean and coefficient of variation 

values of μx,max, μy,max, μxb,max, μyb,max, μb,max, rap, rb-u (the first entry represent the 
mean, and the second entry represent the coefficient of variation). 

Case1 Parameters 
varied Values μx,max μy,max μxb,max μyb,max μb,max rap rb-u 

1 — — 2.02
0.32 

2.01
0.32 

2.01
0.37 

2.03
0.36 

2.54 
0.35 

0.87
0.15 

1.10
0.18 

2 Tnx & Tny 0.1, 0.1 12.09
1.14 

12.13
1.09 

15.74
1.20 

15.86
1.10 

21.51 
1.11 

1.11
0.28 

1.32
0.30 

3 Tny 0.25 2.02
0.32 

7.42
0.96 

2.53
0.50 

7.47
0.95 

7.70 
0.92 

0.97
0.13 

1.07
0.16 

4 φx & φy 0.25, 0.25 5.67
0.58 

5.63
0.60 

5.75
0.57 

5.72
0.62 

7.58 
0.55 

0.91
0.20 

1.10
0.24 

5 n 1 2.07
0.36 

2.05
0.37 

2.25
0.43 

2.26
0.47 

3.81 
0.44 

0.91
0.25 

1.59
0.27 

Note: For Case 1, Tnx=0.5, Tny=0.5, φx=0.5, φy=0.5, n=2, δv=0, and δη=0. 
 
 By assuming that μx,max, μy,max, μxb,max, μyb,max, μb,max, rap, rb-u are independent of M, D, 
Vs30 and PSA, the estimated means and coefficient of variation (cov) of these variables for the 
considered records are shown in Table 2.  The statistics shown in Table 2 for μx,max, μy,max, 
μxb,max, μyb,max, and μb,max are calculated from those samples whose values are greater than 1.0, 
which represent the ductility demand.  Note that the percentage of number of records leading to 
the normalized responses of interest greater than 1.0, pr, is greater than 99%. From the table, it 
can be observed that the means of μxb,max and μyb,max are similar to those of μx,max and μy,max, 



respectively; but the cov values of μxb,max and μyb,max are slightly greater than those of μx,max and 
μy,max,.  The former implies that the consideration of biaxial response does not increase 
significantly the responses along the X or Y axes, although significant variability of the ratios of 
μxb,max to μx,max, and of μyb,max to μy,max can be observed from the table.  It indicates that the 
biaxial interaction could increase or reduce the response along a particular direction. The table 
also shows that the mean of μb,max is greater than the means of μx,max and μy,max by about 30%, 
which indicates that the ductility demand for this considered structure under bidirectional 
seismic excitations is about 30% greater than that obtained by considering the unidirectional 
seismic excitations.  The cov value of the ductility demand for the considered structure under 
bidirectional seismic excitations is similar to those under unidirectional seismic excitations. 
Since the mean of rap is smaller but near 1.0 and its cov value, which equals 0.15, is relatively 
small, it shows that μb,ap approximates μb,max well. 
 In order to assign a probabilistic model to μb,max, samples of μb,max are fitted to several 
well-known probability distribution types such as normal, lognormal, gamma, Weibull, Frechet 
distributions.  Based on the Kolmogorov-Smirnov and Chi-square tests, it was concluded that the 
lognormal and Frechet distributions, among the considered distribution types, provides the best 
fit to the data.  This fitted distribution is illustrated in Figure 4a.  Similar analysis was carried out 
for rap and rb-u and the best fit lognormal distributions for rap is depicted in Figures 4b. 
 

    

Figure 4.    Fitted lognormal distributions for  μb,max and rap for Case 1 
 
 To investigate the impact of some of the structural parameters on the normalized 
displacement, the analyses carried out for Case 1 are repeated but varying one or two structural 
parameters as shown in Table 1 (i.e., Cases 2 to 5).  The obtained results are shown in Table 1 as 
well.  More extensive parametric studies are to be reported in a near future.  The general 
observations that can be drawn from the table are: 
1) Ductility demand under bidirectional seismic excitations could be much greater than that 

obtained under unidirectional excitation if the normalized yield strengths in both 
directions are similar and small.  However, if the normalized yield strengths in both 
orthogonal directions differ significantly, the ductility demand under biaxial excitations is 
similar to that obtained along the axis with smaller normalized yield strength under 
unidirectional excitation. 

2) In some cases, the mean of μb,max can be about 55% greater than the means of μx,max and 



μy,max, which indicates that the ductility demand for structure under bidirectional seismic 
excitations is about 55% greater than that obtained by considering the unidirectional 
seismic excitations. 

3) Since the mean of rap is near 1.0 and its cov value is relatively small as compared to that 
of μb,max,  μb,ap provides a good approximation to the ductility demand for structures 
under bidirectional excitations.  For practical applications, therefore, this approximation 
is recommended. 

4) The degree of uncertainty in the ductility demand (i.e., cov of ductility demand) for 
structures under bidirectional or unidirectional excitations are similar. 

 
To evaluate the recording orientation effect on ductility demand, Ψ = 30o, and the 

principal axes defined by Arias intensity coinciding with the structural axes are considered for 
Case 1. The obtained results are shown in Table 2, indicating that the orientation of ground 
excitations do not affect the statistics of ductility demand significantly, although it seems that the 
mean ductility demand is slightly increased if the principal axes defined by Arias intensity 
coinciding with the structural axes and without considering biaxial interactions. This needs to be 
verified further by considering different structural properties. 
 
Table 2.     Mean and coefficient of variation values of μx,max, μy,max, μxb,max, μyb,max, μb,max, rap, rb-u 

(the first entry represent the mean, and the second entry represent the coefficient of 
variation) Considering Case 1. 

Angle μx,max μy,max μxb,max μyb,max μb,max rap rb-u 
30o 2.06

0.39
2.07
0.31

2.07
0.39

2.06
0.35

2.60 
0.35 

0.87 
0.17 

1.10
0.19

Principal axes coinciding 
with structural axes 

2.09
0.35

2.00
0.33

2.03
0.37

2.00
0.35

2.51 
0.37 

0.85 
0.16 

1.07
0.18

 
 

Conclusions 
 

 Structures are subjected to at least two orthogonal horizontal seismic excitations; simple 
rules for estimating the inelastic responses or displacement ductility demands are lacking for 
such cases and considering possible biaxial interactions.  Parametric studies to develop such 
simple rules are explored for idealized inelastic 2DOF systems (without considering torsional 
effects) whose hysteretic behavior is represented by the Bouc-Wen model with biaxial 
interaction. Conclusions that can be drawn from numerical results for a set of 381 California 
records presented in this study include: 
1) Use of the ductility demand obtained under unidirectional excitations to represent the 

ductility demand under bidirectional excitations leads to, on average, an underestimation 
of about 30% to 55%.  This underestimation is highly dependent on the shape of the 
considered surface at yield and the natural periods of the system.  The underestimation of 
the damage and seismic risk is likely to occur if the effect of bidirectional excitations is 
ignored. 

2) A simple approximate equation is developed in this study for estimating the ductility 
demand of a structure under bidirectional excitations.  Statistical analysis results suggest 
that the developed approximation is adequate, the ductility demand under directional 



excitations can be modeled by a lognormal or Frechet variate, and the coefficient of 
variation of ductility demand for structure under unidirectional or bidirectional 
excitations are similar. 
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