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ABSTRACT 
 
 In this paper, a new framework to construct fragility functions for steel structures 

based on damage sensitive features (DSF’s) obtained from the field of structural 
health monitoring (SHM) is developed. Using an analytical model of the structure 
that is subjected to a set of selected ground motions at various intensities, and the 
time-histories of the structural responses and the damage states are recorded 
through the data collection scheme of SHM. The wavelet based damage sensitive 
features, which include the information, regarding the damage state of the 
structure are extracted from those signals using statistical signal processing 
techniques. Finally the fragility function defined as the probability of being in 
each damage state given the value of DSF is constructed using a kernel smoother 
and a conventional distribution function. The proposed framework combines the 
concept and technology from two different fields, SHM and performance-based 
earthquake engineering (PBEE). These fragility functions can be used as the 
classification scheme for damage diagnosis in SHM and also the prediction model 
of structural behavior in PBEE. In order to demonstrate and validate the 
procedure, the framework is applied to the acceleration response data obtained 
from the experimentally validated analytical model of a four-story steel moment 
resisting frame. The results demonstrate that the proposed fragility functions can 
represent the damage state of the steel frame probabilistically based on the value 
of DSF, and have smaller variance than the conventional ones. but with smaller 
damage variances of majority of intensity measures and thus improved confidence 
of level of prediction of damage.  

  
  

Introduction 
 
 Structural safety is one of the most fundamental issues in the design and the maintenance 
of structures in order to protect life safety and facilitate their operations. Over their lifetimes 
structures are exposed to various sources of damage, and it is essential to accurately predict the 
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potential hazard and risk of the structures. Many restrictions have been enforced by building 
codes in the design and the maintenance process of civil structures to ensure the minimum 
safety, but as structural design becomes diverse and new construction technologies emerge it has 
become difficult to apply a consistent design code to all cases. Also, as the structure deteriorates 
or gets damaged with time the potential risk changes. Performance-based design (PBD) has been 
receiving increasing attention among researchers and practitioners in the structural engineering 
community. At the same time, extensive research has been focused on developing reliable and 
efficient damage diagnosis and prognosis methods for structural health monitoring (SHM) to 
provide accurate information of the current state of the structure.   
 
 The main goal of the PBD is to predict the probabilistic performance of the structure 
subjected to extreme earthquake events and to design accordingly to achieve the performance 
objectives (SEAOC 1995, Ghobarah 2001, Porter 2007). According to Ghobarah (2001), PBD is 
a methodology in which the design criteria are expressed in terms of achieving performance 
objectives when the structure is subjected to various levels of seismic hazard. In the conventional 
PBD framework, the fragility function maps the intensity measure (IM) of the ground motion or 
the engineering demand parameter (EDP) of the structure to the damage measure (DM) in order 
to predict the probability of the future damage of structures. Frequently used IM’s and EDP’s are 
peak ground acceleration, spectral acceleration, and peak floor acceleration (Ibarra et al. 2002, 
2005, Medina and Krawinkler 2003, Zareian and Krawinkler, 2007, Porter 2007). There are 
many uncertainties involved, the most prevalent being the modeling of inelastic structural 
behavior and ground motion. 
 
 SHM consists of (a) damage diagnosis where structural damage is detected, localized, and 
quantified, and (b) damage prognosis where residual strength and life is forecasted (Rytter 
1993). By automatically diagnosing damage and estimating future performance, SHM can make 
the maintenance process more efficient, less expensive, and safer than visual inspection by 
professionals. SHM provides accurate estimates of the current state of the structure and expedites 
and provides an appropriate response such as limiting access or sending emergency crews after 
extreme events such as an earthquake or planning repairs and replacements. Damage diagnosis 
methods using statistical pattern recognition methods extract the DSF’s from structural response 
signals using signal processing techniques. The DSF’s contain information on the damage state 
of the structure and migrate as the damage progresses, and are mapped to different damage states 
using statistical classification methods. Extensive literature reviews on damage diagnosis 
methods are provided in Doebling et al. (1996) and Sohn et al. (2003). With the recent 
development of autonomous sensing units and wireless communications, structures can be 
densely instrumented to monitor their response before and after and/or during an earthquake 
event (Straser 1998, Lynch 2004). The statistical pattern recognition methods can be embedded 
in the sensor units and the results can be transmitted wirelessly in order to reduce the installation 
and maintenance cost. 
   
 The main purpose of this paper is to develop a novel framework to build fragility 
functions that integrate wireless sensing technology, numerical model development and its 
validation techniques, damage diagnosis algorithms using statistical signal processing methods, 
the PBD framework, and statistical parameter estimation tools. Structural response and the 
resulting DM are obtained from the analysis of a validated model. Using the signal processing 



methods of damage diagnosis in SHM, the DSF is extracted from each signal, and the 
probabilistic mapping between the DSF and the DM is defined using a kernel smoother and 
distribution function fitting. The DSF combines information from the whole structural response 
signal and is physically related to the structural parameters (Nair 2007). Thus, it contains more 
information about the structure than conventionally used measures such as spectral acceleration 
and peak floor acceleration. The proposed fragility functions can be utilized in two ways. From 
the PBD perspective, they can be used to predict potential structural damage at the design stage 
like other conventional fragility functions. The proposed fragility functions can be part of the 
PBD process and can be used to compute the annual loss rate of the structure. On the other hand, 
they can also be used as a classification method for DSF’s to estimate damage in SHM when a 
new earthquake occurs.  
 

Framework for Creating Fragility Functions Based on Damage Sensitive Feature  
 
 The framework consists of three parts: (i) data collection; (ii) feature extraction; and (iii) 
development of fragility functions. This framework can be applied to any structure. It is assumed 
that a numerical model for the structure is available. In part (i) the structure is subject to a suite 
of ground motions and corresponding structural responses time-histories are collected at various 
damage states keeping track of the damage state corresponding to each signal. In part (ii), the 
DSF that contains the damage information of the structure is extracted from each signal using 
signal processing techniques in SHM. Finally in part (iii), the fragility functions are computed 
based on the results of part (ii) using a kernel smoother and by fitting a conventional distribution 
function through the final damage functions.  

 
Data Collection 
 
 Structural responses at various levels of damage are collected in order to populate the 
database. Since the statistical tools are used to build the framework, it is important to have a 
large pool of data with minimum bias. The responses can be obtained from a validated numerical 
model or from an instrumented structure depending on the availability. The measurements can be 
ambient vibration or strong motion responses depending on the damage diagnosis algorithm to 
be used. Acceleration and strain measurements are typically used since they are easy to measure 
in the SHM system. The corresponding DM is also recorded along with the structural response. 

 
Feature Extraction 
 
 Damage diagnosis algorithms using statistical pattern recognition methods are applied to 
the structural response data to extract DSF. The algorithms can be categorized into two types 
according to ambient vibration responses before and after the damage, or strong motion 
responses. The algorithms using ambient vibration responses include time-series based analysis 
developed by Sohn et al. (2001) and Nair et al. (2006). On the other hand, Hou et al. (2000), 
Hera and Hou (2004), Nair and Kiremidjian (2007), and Noh et al. (2009) used the wavelet 
analysis for strong motion responses. An appropriate method for damage diagnosis is chosen 
according to the collected data and the damage of interest, and the DSF is computed for each 
signal at every sensor locations. For the application given in this paper wavelet based DSF 
developed by Noh et al. (2009) is used since the collected signals are non-stationary strong 



motion responses. 
 

Fragility Function Development 
 
 In order to estimate the damage state of the structure based on the DSF, the probabilistic 
relationship between DSF and a measure of damage level (DM) is developed. The conditional 
probability of DM given DSF value, commonly referred to as the fragility function is obtained by 
using a kernel smoother and fitting a conventional cumulative distribution function (CDF).  
 
 DM can be a continuous numeric value such as dollar loss and downtime or a discrete 
damage state such as ‘no damage’, ‘slight damage’, and ‘severe damage’. When the DM is 
continuous it can be divided for simplicity into a few mutually exclusive and collectively 
exhaustive sets each of which defines a damage state (DS). The DS’s are defined as follows: 
 
 { }iii dsDMdsDMDS <≤= −1  for i = 1, 2, 3, …, n  (1) 
 
where DSi is the ith DS, dsi’s are monotonically increasing limit values for increasing i's and n is 
the number of DS’s. For example, each DSi can correspond to fully operational, operational, life 
safe, and near collapse (SEAOC 1995). When the DM is discrete, either (i) each levels of DM 
can be used for a DS, or (ii) a set of DM can be defined as a DS following the similar procedure 
as the continuous DM case.  
 
 From the numerical simulation and the structural damage diagnosis a pair of DM and 
DSF, {dmi, dsfi}, is computed for each signal at each sensor location. All the DM and DSF pairs 
are sorted in the descending order of DSF in order to compute the fragility function, the 
conditional probability that DM is greater than or equal to dsi given the value of DSF. One 
method is to use data binning to quantize DSF and count the number of DM’s that satisfies the 
condition within the bin (Porter et al., 2007). Instead, the kernel smoother is applied to compute 
the conditional probability in this framework. The fragility function is given as: 
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where I(x) is an indicator function that is 1 if x is true and 0 otherwise, and Kj is a kernel. The 
kernel assigns a different weight for each pair of DM and DSF. Using a rectangular kernel with 
height 1 is equivalent to the data binning methods. The advantages of using the kernel smoother 
instead of the data binning are: 
 

1. All the data are used to estimate the conditional probability. Thus, there is no problem 
regarding lack of data such as bins with no elements. 

2. The conditional probability can be computed for all the dsfj, not per bin. 
3. The resulting fragility function is a smooth curve. 

 
This conditional probability as a function of dsfi is the fragility function. The conditional 



probability that DM is in a particular DS can be computed by taking the difference between Fi 
and Fi+1. The fragility function is computed for each sensor location separately. 
 
 For convenience, the conventional CDF is fitted to the fragility function. The benefits of 
fitting the CDF are: 

 
1. The function is completely described by a few parameters. 
2. The function is continuous, thus defined for all possible DSF values (no interpolation is 

necessary). 
3. The function is monotonically increasing. 

 
The lognormal CDF is used in the conventional fragility functions, but other functions such as 
beta CDF and normal CDF can be also used depending on distribution of the data. In general, the 
function should be chosen to minimize the fitting error. 
 

Application 
 
 The framework for developing fragility functions for steel buildings based on DSF is 
applied to acceleration data obtained from a numerical model of a 4-story steel moment resisting 
frame designed based on current seismic provisions in United States. Details about the prototype 
structure can be found in Lignos and Krawinkler (2009). The analytical model of the 4-story 
frame is modeled in DRAIN-2DX (Prakash et al. 1993) with elastic beam column elements and 
deteriorating springs at their ends. Deterioration parameters for the components are extracted 
from a recently developed steel database for deterioration modeling (Lignos and Krawinkler, 
2007, 2009). The analytical model of the building is subjected to a set of 40 earthquake ground 
motions utilizing incremental dynamic analysis (Vamvatsikos and Cornell, 2002) scaled to 
provide behavior from elastic response through collapse. A scale model of the 4-story steel 
moment frame was tested experimentally on a shaking table through collapse to validate the 
analytical models (Lignos and Krawinkler, 2009). The acceleration responses during the strong 
motion are collected after each excitation. A wavelet based damage diagnosis algorithm 
developed by Noh et al. (2009) is applied to the data to extract the DSF and is used to compute 
the fragility functions. 
 
Methodology 
 
 Acceleration time histories at all the floors including the ground floor and the roof during 
the earthquake excitations and the maximum story drift ratio (SDR) are obtained from the 
numerical model. For feature extraction, the wavelet based DSF developed by Noh et al. (2009) 
is used since the non-stationary character of both earthquake ground motions and structural 
responses can be captured using the wavelet transform. This DSF varies between 0 (when there 
is no damage) and 1 (when the structure is severely damaged) and quantifies the damage of the 
structure after each ground motion. An example of the values of the DSF for different intensities 
of input ground motions, referred as damage patterns (DP’s) is shown in Fig 1. The details of the 
procedure to calculate the DSF is given in Noh et al. (2009). SDR is used to define the four 
damage states (DS’s) of the structure - no damage, slight damage, severe damage, and collapse 
with dsi’s 0 %, 1.5 %, 4 %, 8 %, and ∞ for i = 0, 1, …, 4 respectively. Although SDR is an EDP, 



it is often directly used to describe the damage state of the structure (BSS Council 1997, 
Ghobarah 2001, Liu 2004) since it is strongly correlated with the structural damage and can 
easily quantify the damage. While it is relatively easy to compute SDR in numerical analysis 
compared to other DM’s, it is expensive to measure displacements accurately in practice. Thus, it 
is useful to estimate SDR from the easily measurable DSF. The fragility functions between DS 
and DSF are computed using Gaussian kernel and beta CDF. 
 

 
Figure 1.  DSF for increasing intensities (DP) of the input ground motion. 

 
Results 
 
 Figure 2 shows the fragility functions at the roof created using the beta CDF’s. The 
fragility functions for more severe DS’s are smaller in magnitude than those for smaller DS’s at 
all DSF values. The probability of being in a DS is computed as the difference between two 
adjacent fragility functions, and the results are shown in Figure 3. When these fragility functions 
are used for SHM in practice, all the floor acceleration time histories are measured from the 
physical structure while subjected to a real earthquake. The DSF is computed afterwards based 
on this acceleration record. Finally the damage state of the structure is determined 
probabilistically based on the DSF using the fragility functions developed from the numerical 
model prior to the occurrence of the earthquake. Note that the fragility functions are structure 
specific, thus they can be used for damage diagnosis of only the structure whose model is used to 
build the fragility functions. The DS of the structure can be determined as the DS that occurs 
with the maximum probability or the mean DS value over all damage states. 
 



 
Figure 2.  Fragility functions using Beta CDF at the roof 

 

 
Figure 3.  Probability of each damage state at the roof 

 
 The performance of the wavelet based DSF and other conventional EDP or IM measures 
(spectral acceleration (Sa) and peak roof acceleration) for damage diagnosis are compared to 
check the efficiency of each measure. The scatter plots of SDR versus these measures are 
presented in Fig. 4 that Figs. 4 (a), (b) and (c) show SDR vs. Sa, peak roof acceleration, and the 
DSF, respectively. The correlation coefficient between the DSF and the SDR has the largest 
value 0.877 followed by that of the peak roof acceleration (0.8621) and that of the Sa (0.8295). 
The correlation coefficient represents the strength of the linear relationship between two 
parameters, but what we are more interested in is the dispersion of the SDR given the value of 
EDP or IM. It is observed from these figures that the dispersion of the SDR given the DSF is 
smaller than that given the Sa or the peak roof acceleration. This implies that the DSF can 
estimate the DS with smaller variance, thus demonstrating that DSF based fragility functions are 
more effective in prediction in this example than the Sa or the peak roof acceleration. Further 
investigation, however, is necessary with various types of structures and loadings in order to 
validate the performance of the DSF. 
 



 
 

Figure 4. Scatter plots: (a) spectral acceleration vs. SDR; (b) peak roof acceleration vs. SDR; (c) 
DSF vs. SDR  

 
Conclusions 

 
 A new framework is developed to create fragility functions for steel structures based on 
the damage sensitive feature from damage diagnosis algorithms in structural health monitoring 
using statistical pattern recognition methods. The framework is based on an extensive database 
of structural responses created from a numerical model and the DSF that contains information on 
the damage state of the structure extracted from the data using the damage diagnosis algorithms. 
Finally, the probabilistic relationship between the damage state and the DSF is computed using a 
kernel smoother and a conventional distribution function. Thus, the newly developed fragility 
functions provide the probability of the structure being in a particular damage state given the 
DSF computed from the structural response. The procedure is demonstrated through an example 
of a 4-story steel moment resisting frame subject to various intensities of 40 different ground 
motions. In the example a wavelet based DSF developed by Noh et al. (2009) is used for feature 
extraction, and SDR is used to describe the damage state of the structure. The fragility functions 
that map the DSF to SDR in the probabilistic frame are defined using Gaussian kernel smoothers 
and beta CDF fitting. The results show that the newly developed fragility functions can predict 
the damage state defined by SDR with smaller variance than the conventional ones. These 
fragility functions can be used as the classification scheme for damage diagnosis in SHM and the 
prediction model of the future structural risk in PBEE. 
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