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ABSTRACT 
 
 This paper presents an automatic damage localization technique for 

buildings based on changes of dominant frequencies identified from incomplete 
measurements. Natural frequency is global measure of structural characteristics. 
The changes in structural condition cause different combinations of the change in 
natural frequencies, the shifts of multiple natural frequencies can provide the 
information on the location of damaged stories. The mode shapes are assumed to 
remain unchanged in a slight or moderate damage. A database with the pattern of 
modal frequency changes under different damage scenarios is established. The 
location of damage is then identified through comparison of the pattern of the 
damaged building and the pattern in the database. Moreover, a fuzzy inference 
system (FIS) was applied to develop the pattern recognition system. Finally, a 
multi-story shear building was considered to examine the accuracy and 
applicability of the proposed damage localization technique via experimental data. 
The acceptance of the assumption was also verified.  

 
Introduction 

 
In recent years, with the advanced systems of data acquisition and signal processing, there has 

been an increasing interest in the structural health monitoring (SHM) in methodologies that are 
capable of detecting and quantifying structural damage in areas of a structure, at which some non-
destructive tests (NDT) for detail damage evaluation are implemented. Calculating the change of 
modal frequency to detect damage is wildly used in structural health monitoring (SHM) systems 
because damage is always accompanied by a reduction of stiffness as well as modal frequency. 
Damage in different locations and components actually leads to different frequency changes in 
various modes. Nevertheless, it remains difficult to determine the damage location just by 
observing the changes of modal frequencies.  
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Among the modal parameters of a structure system, the mode shape is obviously the only 
location related parameter. Therefore, many researchers have attempted to establish mode-shape-
based indices, such as modal curvature index (Pandey et al. 1991; Farrar and Jauregui 1998), index 
MAC (Modal Assurance Criterion) (Allemang and Brown 1982) and index COMAC (Coordinate 
Modal Assurance Criterion) (Iieven and Ewins 1988), to identify damage and its locations. All 
above indices have simple expressions and have been applied in identifying the location of damage. 
However, it has been shown that they have low sensitivity to damage in some cases (Ndambi et al. 
2002; Brasiliano et al. 2004). Considering both modal frequencies and mode shapes to detect the 
occurrence and location of damage may be a more reliable way than relying on either one of them. 
The modal flexibility damage index (MFDI) (Pandey and Biswas 1994) may be the most well-
known one. The principle of this method is on the basis of the comparison of the flexibility 
matrices obtained from two sets of mode shapes. Moreover, this method involves the normalization 
of mode shape since the mode shape values are not fixed. The advantage for the mode-shape-based 
technique is containing spatially related information, thus damage location is available. While the 
disadvantage of this technique is that large number of measurement locations are required to 
accurately characterize mode shapes.  

Many researchers developed other accurate damage indices for various types of structures. 
Brasiliano et al. 2004 evaluated the residual error method in the movement equation to verify its 
efficiency when applied to continuous beams and frame structures. Kim and Chun 2004 derived an 
index to apply to buildings. Kim et al. 2003 employed frequency-based and mode-shape-based 
damage detection methods for locating and quantifying damage in pre-stressed concrete beams. 
Bernal 2002 and Bernal and Gunes 2002 proposed a technique to localize damage in structures 
using damage locating vectors (DVLs) that have the property of inducing stress fields whose 
magnitude is zero in the damaged elements. The DLVs are associated with sensor coordinates and 
are computed systematically as the null space of the change in measured flexibility. Wang et al. 
2007 developed a story damage index (SDI) and expressed as a simple formula based on modal 
frequency and mode shape obtained from real earthquake records. Morita et al. 2005 proposed a 
damage detection technique that requires only the change in dominant frequencies. The technique 
has also been verified by the shaking table test. For all the aforementioned methods, the incomplete 
mode shape is the primary problem because sensors are usually partially distributed in a real 
instrumented case.  

In structural engineering, it is not practical to have measurements at all degrees. In most 
applications, an incomplete set of recorded time histories is available and this impairs the 
applicability of the SHM methods. In the case of an incomplete set of measurements, only limited 
information about the system parameters can be retrieved (Lus et al. 2003). In addition, dealing 
with a limited set of input-output measurements raises issues related to the uniqueness of the 
identified solution (Franco et al.). 

Based on the discussions mentioned above, studies on damage localization technique for 
structures with incomplete measurements are quite important. This paper presents an automatic 
damage localization technique for buildings based on changes of dominant frequencies identified 
from incomplete measurements. First, the modal property of the undamaged building should be 
known by system identification (Lin et al. 2005; Morita et al. 2005) or finite element model. Then, 
a database with the pattern of modal frequency changes under different damage scenarios is 
established. The location of damage is then identified through comparison of the pattern of the 
damaged building and the pattern in the database. Moreover, a fuzzy inference system (FIS) is 
applied to develop the pattern recognition system. Following the theoretical derivation, the 



proposed damage localization technique is demonstrated by the shaking table test data of a three-
story benchmark building and some conclusions are drawn. 
 

Damaged Localization using Multiple Natural Frequency Shifts 
 
Dynamic and characteristic equations 

Considering an N–story shear building frame with mass ml at the l-th floor and with 
stiffness kl and damping cl at the l-th story, the equation of motion of the linear building frame 
under ground acceleration )(tug&&  can be written as:  

)()()()( tuttt g&&&&& MrKuuCuM −=++                                                                                     (1) 
where M, and K are the N × N mass and stiffness matrices respectively: 
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In Eq. 1, C is the N × N damping matrix. u(t) represents the N × 1 vector of the floor 
displacements relative to the ground at a time t; and r indicates the N × 1 influence vector. In Eq. 
2, diag represents the diagonal matrix. The characteristic equation of the system can be 
represented as 

MΦωKΦ 2=                                                                                                                       (4) 
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In Eq. 5, ωi and φi denote the i-th natural frequency and mode shape vector, respectively. 
 
Damage localization using multiple natural frequency shifts 

The squared natural frequency of Eq. 4 can be rewritten as 
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The change in squared natural frequency due to damage of the building can be represented as 
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where subscripts 0 and D represent undamaged and damaged states, respectively. For “slight” 
and “moderate” damage, assume the mode shapes remain unchanged.  
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Eq. 7 reduce to 
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The change in stiffness matrix KΔ  can be decomposed into the changes in story stiffness of each 
story as follows 
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In Eq. 11, lkΔ  is the change in story stiffness of the l-th story while αl is the story stiffness 
reduction ratio (SSSR) at the l-th story. Dividing both sides of Eq. 10 by 2

0iω  gives 
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where iΩ  is the squared natural frequency change ratio (SFCR) in the i-th mode. S0i is the i-th 
modal strain energy of the system while S0il is the i-th modal strain energy stored in the l-th story. 
The i-th modal strain energy ratio (MSER) of the l-th story is defined as 
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From Eq. 13, Eq. 12 can be written as 

∑
=

⋅=Ω
N

l
lili

1
αλ                                                                                                                     (14) 

If P ( NP ≤ ) modes are considered, Eq. 14 can be written as 
11 ××× ⋅= NNPP αΛΩ                                                                                                               (15) 

Eq.15 can be expressed as a matrix form in follows 
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In Eq. 15, NP×Λ  (MSER) represents the relationship matrix between the SSSR vector 1×Nα  and 
the SFCR vector 1×PΩ .  



Damage at single floor 

If the damage only occurs in the r-th story, vector rα  will be much lager than other lα  in 
the vector 1×Nα . In other words, if the damage concentrates on the r-th story, stiffness reduction 
does not occur at other stories than the r-th story, Eq. 15 reduces to  

rrP α⋅=× λΩ 1                                                                                                                      (17) 

where Ω )1( ×∈ P  represents the SFCR vector while )1( ×∈ Prλ  represents the multiple modal 
strain energy ratios at r-th story. In Eq. 17, it can be observed that rα  is a constant, vector Ω  is 
proportional to vector rλ . When the elements of the Ω  and rλ  are normalized and drawn in bar 
charts, the damaged story can be located by comparing the patterns of Ω  and rλ . This means 
that a damaged story can be located by comparing the patterns of SFCR and MSER. Figure 1 
shows the relationship between  Ω  and rλ  (damage only at r-th story).   
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Figure 1. Relationship between  Ω  and rλ  (damage only at r-th story). 

The story stiffness reduction ratio rα  can be determined by 
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Damage at multiple floors 

If Eq. 15, when damage at multiple floors, the stiffness reduction ratio vector can be determined 
by 

11 ×
⊕
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Note that in Eq. 15, when P ( NP ≤ ) modes are considered, more unknown than equations, 
although Eq. 19 gives a minimum-norm solution, which may lose the accuracy in estimating the 
story stiffness reduction ratio 1×Nα  vector. If NP = , from Eq. 15, 1×Nα  can directly computed 
by 
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Although Eq. 20 has unique solution for 1×Nα , it is very sensitive to the error of mode shapes, 
more studies should be conducted in this area.  
 

Pattern Recognition using Fuzzy Inference System 
 

As mentioned above, the damaged story can be located by comparing the patterns of SFCR 
and MSER. In this section, fuzzy inference system (FIS) is applied to develop an automatic 
damage localization system. The fuzzy set theory (Zadeh 1965) was first proposed by Zadeh in 
1965. Mamdani applied Zadeh’s theories of linguistic approach and fuzzy inference on the 
automatic operating control of a steam generator (Mamdani 1974). The advantage of the FIS is 
its ability to handle nonlinearities and uncertainties in the system. Nevertheless, for a more 
realistic implementation, system nonlinearities can be overcome easily by introducing human 
expertise into fuzzy IF-THEN rules (Choi et al. 2004). Figure 2 shows the flowchart of pattern 
recognition using FIS. The FIS consists of three basic parts; fuzzification where continuous input 
variables are transformed into linguistic variables, fuzzy rule inference that handles rule 
inference consisting of fuzzy IF–THEN rules, and defuzzification that ensures output variable. 
The design of the FIS includes the definition of input (SFCR pattern) and output (damaged floor) 
variables, the selection of data manipulation method, the membership function design and the 
rule base design. Using fuzzy rules (MSER patterns) and membership functions, FIS converts 
linguistic variables into numerical values. 

SFCR pattern 

Fuzzification 

Fuzzy Inference 

Defuzification 

Damaged floor 

Fuzzy rules 

FIS 

MSER patterns 

 
Figure 2: Flowchart of pattern recognition using fuzzy inference system (FIS). 

 
Verification via Experimental Data 

 

Description of test frame and experiment 

The experimental structure used in this study was a full-scale three-story steel frame 
mounted on the shake table at the National Center for Research on Earthquake Engineering 
(NCREE) as shown in Figure 3. This structure is regarded as a benchmark building designed for 
the demonstration of research on structural control and health monitoring in Taiwan (Table 1). It 
is a uniform building with 18 tons in weight and 9 m in height. The dimension of the rectangular 
floor is 3 m × 2 m. The weight of each floor comes from the composite frame-plate structure and 
additional lead blocks atop. It is supported by four columns with H-shape (H150×150×7×10) 



section. 
In order to verify the damage localization technique, three types of frame are used to 

represent the “undamaged” and “damaged” structure, which is shown in Figure 4. The 
description of these two types of frame is as follows. (2) Undamaged: the three-story benchmark 
steel structure. (2) Damaged: two weak elements (Figure 4) at the bottom of 1F. Figure 4 also 
shows the locations of the installed accelerometers. The undamaged structure applied complete 
measurement to identify the modal parameters, which are shown in Table 2. On the other hand, 
the damaged structure only measure 1st floor acceleration. Table 3 represents the identified 
modal parameters of the damaged structure. The System Realization using Information Matrix 
(SRIM) technique (Juang 1997, Lin et al. 2005) is applied to compare the identified building 
parameters 

 

Table 1. Dimensions of the steel frame. 

 

Floor Dimension:  3mx2m 
Floor Height:  3m 
No. of floor:  3 stories 
Floor mass:  6 ton/floor 
Beam:  H150x150x7x10 
Column:  H150x150x7x10 
Floor plate:  25mm 

Figure 3. Photo of the three-story steel frame.  

       
Figure 4. Undamaged and damaged test frames. 

UUnnddaammaaggeedd  

Weak element 

DDaammaaggeedd  
Accelerometer 



Table 2. Identified modal parameters of the undamaged structure. 

System Modal Parameter – (undamaged) 
Mode 1 2 3 

Frequency (Hz) 1.07 3.26 5.13 

Damping ratio (%) 1.97 0.21 0.18 

1 0.41 -1.00 -0.85 

2 0.79 -0.50 1.00 
Mode 
shapes 

3 1.00 0.84 -0.46 
 

 

Table 3. Identified modal parameters of the damaged structure. 

System Modal Parameter – (damaged) 
Mode 1 2 3 

Frequency (Hz) 1.03 3.16 5.08 

Damping ratio (%) 0.97 0.32 0.20 

1 N/A N/A N/A 

2 N/A N/A N/A 
Mode 
shapes 

3 N/A N/A N/A 
 

 

Comparison of the SFCR and MSER patterns 

From Tables 2 and 3, the normalized SFCR and MSER patterns can be established. The 
“normalized” means the biggest component of the SFCR and MSER is scaled to 1. Figure 5 
shows the normalized MSER patterns and the normalized SFCR pattern. As mentioned above, 
fuzzy inference system (FIS) is applied to develop the pattern recognition system. In the 
selection of membership functions, four membership functions shown in Figure 6(a) are used for 
the input variables (SFCR) in the FIS. These four membership functions are labeled by S=small, 
M=middle, L=large, and XL=very large. Moreover, as shown in Figure 6(b), the output variable 
uses three membership functions labeled from 1 to 3, which represent the damaged floor. The 
fuzzy rules (based on the MSER patterns) have shown in Table 4. The defuzzificaion process 
used in this study is the center of gravity. The output of the FIS is 1.04, which indicates the 
damaged floor is 1F. On the other hand, 1α  is 0.15, which is computed by Eq. 18. 
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Figure 5. Patterns of MSER and SFCR. 
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Figure 6. Membership functions of input and output variables. 

   Table 4. Fuzzy rules of the fuzzy inference system (FIS). 

Mode 1 XL L M 
Mode 2 L S XL Input 

(SFCR) 
Mode 3 M XL L 

Output (damaged story) 1F 2F 3F 
 

Assumption verification 

        The derivation of this study is based on the assumption of Eq.8. In order to check the 
acceptance of the assumption, a modal assurance criterion (MAC) is defined as 
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Full measurements and the SRIM technique (Juang 1997) are applied to determine the mode 
shapes of the undamaged and damaged cases. The MAC of the 1st to the 3rd modes are 0.9997, 
0.9998 and 0.9997. In this case ( 1α =0.15), the assumption of Eq.8 is quite reliable. 
 

Conclusions 
 

This paper presents an automatic damage localization technique for buildings based on 
changes of dominant frequencies identified from incomplete measurements. For slight or 
moderate damage, assume the mode shapes remain unchanged. A database with the pattern of 
modal frequency changes under different damage scenarios is established. The location of 
damage is then identified through comparison of the pattern of the damaged building and the 
pattern in the database. A fuzzy inference system (FIS) is applied to develop the pattern 
recognition system. Finally, a multi-story shear building is considered to examine the proposed 
damage localization technique via shaking table test. The dominant frequencies of the damaged 
structure are identified from incomplete measurements. From the experimental data of the 
benchmark model (damage at single floor), it is shown that the localization technique can 
localize damage floor correctly. The modal assurance criterion (MAC) showed that the 
assumption is reliable. 
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