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ABSTRACT 
 
 Dynamic behavior of freestanding slender rigid rocking blocks has been 

investigated by Makris and Konstantinidis. We extend this study to investigate 
dynamic response of a slender rigid block that is post-tensioned using an elastic 
cable placed vertically through its centroid and anchored at its top. First, we 
derive the dynamic equation of motion for this post-tensioned inverted pendulum 
system assuming there is no sliding at the contact surface. Then, we investigate its 
dynamic response to pulse and earthquake excitation and identify the role of 
block slenderness and post-tension force intensity parameters. Our findings 
indicated that post-tensioning delays initiation of rocking, increases the ability of 
the block to resist overturning once rocking initiates, and makes the response of 
the block less sensitive to motion-to-motion variability. We conclude by 
investigating the suitability of this dynamic system for use as columns in bridge 
and building structures. 

  
  

Introduction 
 
 A rigid block (RB) under rocking motion acts as a non-linear dissipative oscillating 
system. This fact was recognized by master builders of Ancient Greece, with numerous two-
thousand-year old classical columns still standing in evidence of the effectiveness of rocking 
(and sliding) mechanisms to mitigate the effect of earthquakes on structures. Recent interest in 
ancient structures brought about analytical evidence on the benefits of rocking (Sinopoli,1989), 
(Konstantinidis and Makris, 2005) for classical structures, based on the dynamic analysis of 
rocking rigid bodies conducted in early 1960’s (Housner, 1963). 
 The fundamental difference between a bending (anchored) single-degree-of-freedom 
structural (SDOF) system and a free-standing rocking rigid block is in their force-deformation 
response: a SDOF system hardens while a RB system softens after initiation of rocking (Makris 
and Konstantinidis, 2003). Therefore, even though rocking is an effective energy dissipation 
mechanism, the persistent risk of instability and overturning remains and effectively restricts the 
use of rocking in seismic design. 
 The goal of this paper is to study the stability of free standing rigid block rocking system 
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when it is restrained with an unbounded, or partially unbounded, post-tensioning cable. By using 
different cable configurations, the authors study the possibility of a RB to dissipate energy 
through rocking without overturning. 
 

Background 
 
 Considering that no sliding occurs between the rigid block and the foundation, a free-
standing rigid block is a single degree of freedom system (Figure 1).   
 
 

 
Figure 1.    Free standing rigid block oscilator 

 
 
The equation that describes the free vibration of a RB was first presented by Housner in 1963. 
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where )(tθ  is the rotation angle, oI  the moment of inertia respect to the point of rotation, m  the 
mass, R  the block dimension andα  the slenderness angle, as shown in Fig. 1. The rigid block 
properties can be expressed by two independent variables. The slenderness angle α , and a 
frequency parameter p  defined by by Eq. 2, as follows:  
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Note that the rocking system is nonlinear and therefore the frequency parameter p  is not equal to 
a natural frequency of vibration of a linear oscillator. For the case of a rectangular block, the 
frequency parameter is equal to Rgp 4/3= . To incorporate the energy dissipation at the impact, 
the rotation is assumed to continue smoothly from point O  to O′  (no sliding) as shown in Fig. 1. 
The angular momentum during the impact is conserved, therefore the relationship between the 
angular velocities is obtained (Housner, 1963). Then, the coefficient of restitution r , relating 
angular velocities before and after the impact is defined as: 
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Eq. 3 implies that a slender RB looses less energy than a squat one: therefore, damping of 
rocking motion depends of the block slendernessα . Due to such dissipation mechanism, the 
vibration period and vibration amplitude of a rocking RB in subsequent cycles decreases. If the 
RB is subjected to a horizontal acceleration, the required acceleration to initiate rocking is 
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The block will overturn when αθ ≥ . The overturning of a RB subjected to constant horizontal 
acceleration, to single sine pulse and to earthquake type of excitation was studied (Makris and 
Konstantinidis, 2003). One conclusion is that the scale effect makes the larger blocks (i.e. block 
with larger p ) of two geometrical similar blocks more stable than smaller blocks. 
  
 Makris and Konstantinidis (2003) focused their attention on comparing rocking of a free-
standing RB and vibration of a conventional single-degree-of-freedom oscillator subjected to 
horizontal ground acceleration. The solution of the equation of motion of a free-standing RB 
subjected to ground acceleration )(tug  is: 
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From their study, Makris and Konstantinidis concluded that the SDOF oscillator and the RB are 
two fundamentally different systems. For example, the free vibration of a RB is characterized by 
an increase of the frequency and a decrease of amplitude. Contrary, a SDOF oscillator vibrates 
with constant frequency. Therefore, the response of one of these two systems should not be used 
to predict the behavior of the other.  
 

Dynamics of a Post-tensioned Rigid Block 
 
 
 A free-standing RB system is post-tensioned using an elastic-only steel cable through the 
center of the block cross-section, as shown in Figure 2. This cable is not bonded to the block and 
results in a vertical force that moves with the rigid block. The post-tension force depends on the 
strain ε  of the cable and can be computed as )()( 0 θεθ kPP += . Where 0P  is the initial post-
tension force (at θ  = 0) and  k  the elastic cable axial stiffness. The rotation between the axis of 
the block and the axis of the cable is considered negligible; consequently the post-tension force 
is modeled as a follower force.  



 
Figure 2.    Post-tensioned rigid block oscillator 

 
 
From Fig. 2, the strain in the cable can be computed as: 
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Using Taylor expansion, the strain can be linearized using its first term, as follows:  
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The strain in the cable for a given rotation depends only of the slenderness of the block. This 
strain may far exceeds the high strength steel yielding capacity when the RB undergoes large 
rotations, especially when α is large (Fig. 3). Therefore the model presented here applies for 
relatively slender structures post-tensioned using high-strength steel cables. 
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Figure 3.    Relative strain of the post-tensioning cable for αθ =  
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Fig. 3 also shows that the linearized expression for strain can be used, especially for slender 
blocks. The cab.e force can then be represented by two dimensionless parameters as follows: 
 
 ( ) 






 −+=

α
θηηηθ α oomgP )(  (8) 

 
where 0η  represents the initial post-tension force at 0=θ  (divided by the weight), and αη  
represents the post-tension force when the RB reaches angle αθ = .To obtain the dynamic 
equation of motion of a RB with an elastic post-tensioning cable, the balance of moment with 
respect to points O  and O′  is made, leading to the following equations: 
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Combining Eq. 2, Eq. 8, Eq. 9 and Eq. 10 the solution of the equation of motion of a RB with an 
elastic post-tensioning cable is: 
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If the cable is soft enough so that the increase of the post-tensioning force due to block rotation 
can be neglected (ie. 0ηηα = ), Eq. 11 becomes: 
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Energy dissipation is incorporated at each impact using the conservation of angular momentum 
suggested by Housner, given by Eq. 3. The post-tension cable is assumed remain elastic and, 
thus, does not dissipate energy. In order to initiate rocking, the normalized ground acceleration 
has to be large enough:  
 
 αη tan)1( 0

min +≥
g

ug  (13) 

 
The restoring moment versus the rotation angle of a RB with a soft cable for different post-
tension values 0η  is shown in Fig. 4. It is observed that the restoring moment has a negative 
(softening) slope. The post-tensioning force moves the force-deformation curve up, making the 
restoring moment positive for  αθ > . Therefore, the post-tensioned RB is still unstable but it 
will overturn at a larger rotation than the corresponding free-standing RB. If the flexibility of the 
cable is included (i.e. 0ηηα ≠ ), the stiffness of the system increases and could become positive, 
as shown in Fig. 4. For 01 ηηα +≥  the system becomes stable. The dissipation of the system 



comes only from the balance of angular momentum, thus the dissipation factor r from Eq. 3 
remains the same. Therefore, post-tensioning can be used to obtain a stable dissipative system. 
 

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

θ/α

M
/M

0

 

 

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

θ/α

M
/M

0

 

 

η0=ηα
=0

η0=ηα
=1

η0=ηα
=2

η0=1 and η
α
=1

η0=1 and η
α
=2

η0=1 and η
α
=3

 
Figure 4.    Restoring moment versus rotation ( RmgM ⋅=0 ) 

 
Dynamic Response 

 
Response of a post-tensioned RB to different types of excitation is shown in this section. The 
response is calculated by numerical integration of Eq. 11, expressed in state-space as a 2-DOF 
first order ODE, using a fourth order explicit Runge-Kutta method (Dormand-Prince pair). The 
system becomes stiff when θ  becomes very large (beyond overturning angle), therefore an 
implicit scheme is more efficient to detect overturning. 
 
Free Vibration 
 
 Fig. 5 shows the free vibration responses of a free-standing and a post-tensioned RB 
initiated by displacing the blocks by to an angle 20 αθ = . It is observed that the oscillation 
period decreases as the rotation angle decreases. The post-tension cable does not add any 
damping in this formulation, but since the post-tensioned RB oscillates faster than the free-
standing RB, the amplitude of rotation decreases faster. Otherwise, the behavior of RBs is very 
similar. Since no overturning will occur for the given initial conditions, both RBs remain stable. 
 
Cosine Pulse Excitation 
 
 In order to study the stability of a post-tensioned RB, the response to a ground 
acceleration pulse (Zhang, 2001) is investigated in this study. The excitation consists of half a 
cosine ground acceleration pulse with a period of 1sec and amplitude of .7g. While the free-
standing RB (without post-tensioning) overturns, the post-tensioned RB remains stable and 
dissipates the input energy by oscillating as predicted by Eq. 3. 
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Figure 5.    Free vibration response with an initial rotation 20 αθ = . RB properties are p =2.0 
(1/sec), α =10° 
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Figure 6.    Response to a half-cosine ground acceleration pulse with a period T=1sec. and an 
amplitude of .7g RB properties are p =2.0 (1/sec), α =10° 
 
 

Practical application 
 
 The rocking mechanism can be used as a dissipative system for large bridge structures 
subjected to earthquake excitation (Chen, 2006). However, the rocking mechanism is rarely used 
because it is nonlinear and exhibits chaotic behavior, making it difficult to design against 
instability. The use of post-tensioning cables allows for better control the stability of a rocking 
structure. It is also affords a great opportunity to use a segmental construction. Prefabricated 
segments, connected by post-tensioning cables among other means, are now widely used in 
bridge construction, but their application has been limited in seismic areas due to the complexity 
of segment joints required to insure adequate earthquake resistance. This limitation stems from 
engineers’ intent to design a joint that does not open during an earthquake. However, opening of 
such joints caused by rocking may be beneficial.  
 
 



 In the example shown below, the PEER testbed bridge (Ketchum et al. 2004) is 
redesigned such that the columns are made using two segments post-tensioned together using a 
cable. The joints between the first segment and the foundation, the joint between segments and 
the joint between the top segment and the cap beam are simply grouted joints traversed only by a 
centrally-located post-tensioning cable. These joints are, therefore, expected to open and allow 
for rocking during an earthquake.  
 The column segments are considered to behave as rigid blocks and the bridge girder is 
modeled as a lumped mass equal to the mass of the two adjacent mid-spans. The foundation is, 
also, considered as rigid. The bending and torsional stiffness of the girder is neglected, so the 
bridge column can be modeled as a post-tensioned RB system. In this study, rocking is allowed 
only at the joint between the foundation and the foot of the column. For 100’ bridge span on both 
sides of the column, the properties of this post-tensioned RB system are p = 1.1225 and α=4°. 
Note that the lumped mass of the bridge deck on top of the column increases the column  RB 
slenderness to =columnα 7.1°. 
 

 
 
 
Figure 7.    Typical single column bridge section designed by the Californian DOT (CalTrans)  
 
Two design parameters can be used to obtain a stable rocking response of the column. The post-
tension force parameters αη  and 0η  can be adjusted as needed. Alternatively, the foot of the 
column at the rocking surface can be widened to increase slenderness α. Only the first desing 
option is considered in this study. The response to Tabas earthquake (Iran, 1978) is studied. 
 
 Without post-tensioning the column will start rocking when gu g 07.0≥ and will then 
overturn. In this study, the post-tensioning force was selected such that rocking of the post-
tensioned bridge column initiates when gug 2.0≥ ; this is the principal design parameter in the 

design procedure for post-tensioned rocking systems. Using Eq. 13, 86.10 =η . Large rotations 
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during rocking lead to large cable forces. To avoid large rotations, αη has to be large;  two values 
 0ηηα = and 010ηηα =  were selected in this study to investigate this design consideration. 
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Figure 8. Segmental post-tensioned bridge column subjected to Tabas EQ (a) ground motion; (b) 

time history of column roration normalized by column slenderness.  
 
The maximum amplitudes of column rotation are αθ 85.0max =  for 0ηηα = and αθ 24.0max =  for 

010ηηα = . For 010ηηα =  the maximum force is WeightFpMax *9.5= . For the bridge column 
studied above, a 5in² steel cable with a yield stress of 270ksi can be used. This cable should be 
unbounded along the length of 30ft (Eq. 7 and Eq. 8), corresponding to the length of the first 
segment of the column (Figure 7).The energy dissipated by the rocking column is small because 
the structure is very slender (Eq. 3) so an external dissipation mechanism may need to be 
considered. By increasing the footprint of the column, the dissipation would be larger, but the 
cable would undergo larger strains which it may not be able to resist.  Further research on the 
post-tensioned rocking bridge column segment solution needs to consider the tradeoffs among 
these design decisions.  
 

Conclusions 
 
 The rocking behavior of a rigid block post-tensioned to the rocking surface using  a linear 
elastic cable was examined assuming no sliding occurs. It was shown that the post-tensioning of 
rocking blocks is an efficient way to prevent overturning and thus increase their stability under 
horizontal excitation. The initial post-tensioning force in the cable will increase the overturning 
angle of the rigid block as well as the acceleration amplitude that initiates rocking; both of these 
consequences help stabilize the structure and postpone the event of uplift until larger earthquake 
magnitudes. In order to obtain a stable structure (with a positive post-uplift stiffness), the tension 
force in the cable must be allowed to increase with the block rotation. Therefore, the stiffness of 
the cable plays a major role in system stability.  However, under large rotations, the cable may 



undergo very large strains, especially for squat structures, so typical cable high strength steels 
may not be appropriate and other high strength materials with  larger ultimate strains may need 
to be considered. While slender post-tensioned rocking blocks may be optimal from this 
standpoint, energy dissipation afforded by such systems is small, elongating the time needed for 
the system to stop rocking. Use of supplemental dampers may be considered in this case, but 
further understanding of the impact dissipation mechanism when damage is allowed to occur at 
the impact surfaces, as well as impact wave propagation through the body may also be helpful to 
fully understand how a rocking system dissipates energy.  
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