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ABSTRACT 
 
 Statistical methods are presented to help evaluate cyclic test results in the small 

amplitude range. We utilize several statistical methods to extract from noisy 
feedback signals meaningful response parameters at very small strain levels. 
Previous work has shown that the uncertainty in the estimation of vertical strains 
is much greater than that for shear strains. Hence, we focus in this article on the 
procedures for estimation of vertical strain. Kernel regression with the Nadaraya-
Watson estimator and a Gaussian kernel was utilized in evaluating vertical strain 
response. The calculated response is dependent on the bandwidth, which is user-
selected and takes the form of a kernel regression parameter. We select the 
bandwidth by minimizing the difference between the bias and 95% confidence 
interval range. We utilize these statistical methods to infer shear strain amplitudes 
and vertical strains for cyclic simple shear tests conducted at low levels of applied 
shear strains on dry soil specimens. We identify the threshold shear strain for a 
soil material as the largest level of shear strain where the 95% confidence interval 
range on vertical strain spans the null value.  

  
  

Introduction 
 
 Dynamic soil testing at small strains is required to measure several critical parameters such 
as maximum shear modulus Gmax (e.g., Zeng and Ni, 1999; Youn et al., 2008) and threshold shear 
strain γtv (e.g., Vucetic, 1994). Many soil test machines, such as cyclic simple shear, cyclic triaxial, 
or cyclic torsional shear, are designed to measure large strain properties such as shear strength and 
liquefaction characteristics, and may have a limited ability to reliably measure small strain 
properties as displacement and force signals approach system noise levels. Recent improvements in 
control system technologies hold the potential to extend the range of displacements and 
frequencies that are reliably controlled and measured (e.g., Duku et al., 2007). Yee et al. (2010, in 
review) describe procedures for evaluating cyclic shear strain amplitudes and vertical strains from 
feedback signals that might visually appear to be noise-dominated. This conference paper 
summarizes some of the key findings from that work, especially focusing on the vertical 
displacement estimates, which have the greater uncertainty. The results are then applied to a data 
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set to illustrate how the volumetric threshold shear strain can be evaluated in consideration of the 
measurement noise.  
 

Simple Shear Device 
 
 We utilize the Digitally-Controlled Simple Shear (DC-SS) device described by Duku et 
al. (2007). The DC-SS device features servohydraulic actuation and true digital control, and is 
capable of applying broadband (earthquake-like) horizontal displacement demands on soil 
specimens in two directions and with minimal cross coupling between the motions. Duku et al. 
(2007) found that the principal source of the errors in the feedback signals from the DC-SS 
device is noise introduced by the analog-to-digital (A/D) conversion of the feedback signal. As 
such, this noise is independent of the specimen response (i.e., the specimen does not experience 
the noise portion of the signal). 
 
 

Vertical Measurements 
 
Quantification of Noise 
 
 In the tests with the DC-SS device discussed here, three LVDTs are used to measure 
vertical displacement and potential rotation of the specimen top cap, which is free to displace 
(constant volume is not enforced). Figure 1(a) shows vertical displacements from a constant 
height test with displacement histograms from sample feedback signals of LVDTs v2, v3, and v4 
are shown in Figure 1(b), (c), and (d) respectively. The noise for LVDTs v2 and v3 is normally 
distributed with zero mean and standard deviations of 0.0007 mm and 0.0006 mm respectively, 
whereas the noise for LVDT-v4 takes on one of two values with a standard deviation of 0.0014 
mm. LVDT v4 has lower resolution than the others due to the type of analog-to-digital converter 
channel used. LVDT-v4 uses a 12-bit channel whereas LVDTs-v2 and v3 use 16-bit channels, 
thereby producing higher resolution signals for the fixed range of displacement. 
 The standard deviations for the vertical LVDTs are higher than the horizontal LVDT 
because the horizontal LVDTs are connected to a scaling amplifier which increases the signal 
resolution. This higher resolution allows the data acquisition system to record more data near the 
mean whereas the resolution levels for the vertical LVDTs will show relatively more scatter. 
Additionally, the variation of the signal did not change significantly for the sampling rates 
considered. Test data was obtained from a sampling rate of 0.001s. For a sampling rate of 0.01s, 
the standard deviations did not change significantly. 
 
Mean Vertical Displacements from Noisy Signals 
 
 We estimate the mean specimen vertical displacement by smoothing out the noise effects 
with nonparametric regression. Nonparametric regression can track complex displacement 
patterns occurring over a wide range of values without the constraint of an assumed functional 
form. 
 



 

-0.003 0 0.003
Displacement (mm)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
Fr

eq
ue

nc
y LVDT-v2 Statistics

N = 2,501 points
mean = 0 mm
σ = 0.0007 mm

-0.003 0 0.003
Displacement (mm)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
Fr

eq
ue

nc
y LVDT-v4 Statistics

N = 2,501 points
mean = 0 mm
σ = 0.0014 mm

-0.003 0 0.003
Displacement (mm)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
Fr

eq
ue

nc
y LVDT-v3 Statistics

N = 2,501 points
mean = 0 mm
σ = 0.0006 mm

-0.005

0.000

0.005

D
is

pl
ac

em
en

t (
m

m
)

0 5 10
Time (sec)

lvdt - v2
lvdt - v3
lvdt - v4

(a) (b)

(c) (d)

 
 
Figure 1.    (a). Sample vertical displacement output, and  distributions of sample vertical signal 

noise with normal probability distribution fit to the data for (b) lvdt-v2, (c) lvdt-v3, 
and (d) lvdt-v4. 

 
 Kernel regression (or smoothing) is a type of nonparametric regression that utilizes 
locally weighted averages of the data, in which the weights are defined by a kernel. The kernel is 
dependent on the selected bandwidth and kernel function. The bandwidth and kernel function 
determine the weights assigned to data points used to estimate the mean response for a particular 
point in time. We utilize the Nadaraya-Watson kernel regression function estimator (Nadaraya 
1964, Watson 1964) with a Gaussian kernel function: 
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where h  = bandwidth (length of time window); N  = number of data points within bandwidth; 
and ( )hK μ  denotes the kernel and is taken as: 
 
 ( ) ( )hK K h hμ μ=  (2) 
 
where K denotes the Gaussian kernel function for generic operator u: 
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 For application with DC-SS data, all three vertical LVDT signals are considered 
simultaneously. By doing this, the Nadaraya-Watson estimator essentially evaluates a smoothed 
average displacement. Point-wise confidence intervals for kernel regression are defined by 
(Härdle 1990): 
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the general procedure to calculate mean vertical displacements from noisy signals is to: 
1. Select a bandwidth (a suggested selection criteria is described in the subsequent section). 
2. Calculate the kernel for each time step (Eq. 2 and 3). 
3. Calculate the kernel regression function estimator (Eq. 1) by applying the kernel to each 

displacement data point. 
4. Calculate the point-wise confidence intervals using the kernel and kernel regression 

function estimator (Eq. 4). 
 
Bandwidth Selection 
 
 A critical consideration in the application of nonparametric regression is bandwidth 
selection (Härdle 1990). A large bandwidth incorporates more data into the regression, which 
decreases the uncertainty in the mean estimate (i.e., narrows the confidence interval). However, a 
larger bandwidth may also increase bias, which we define as the difference between the ideal 
estimate and the computed estimate. To select a bandwidth that balances bias and variability, we 
compare the average point-wise 95% confidence interval range against the average root mean 
square error. The average root mean square error is calculated by: 
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where n  = number of data points; , 2i LVDT vy − , , 3i LVDT vy − , and , 4i LVDT vy −  = signal data from LVDT-
v2, LVDT-v3, and LVDT-v4; and ,ˆ h im  = nonparametric regression estimate at time index i. 
 Minimizing the difference between the average 95% confidence interval range and the 
average root mean square error results in a bandwidth that balances variability with loss of 
accuracy by ensuring that at least half of the bias is taken into account in the confidence interval. 
For the common test frequency of 1 Hz, we find an average bandwidth of 0.3 sec. However, for 
certain flat signal profiles, the aforementioned approach produces wide and unreasonable 



bandwidths. This is because for flat signals, the average root mean square error is equivalent to 
zero, which necessitates more data points to reduce the confidence interval range. Therefore, the 
DC-SS selected bandwidth has a maximum equivalent to the length of one full loading cycle. 
This cap is reasonable as it allows the capture of cycle-to-cycle behavior, typical of most soil 
experiments. 
 

Volumetric Threshold Shear Strain 
 
 Volumetric threshold shear strain, γtv, is defined as the amplitude of shear strain in cyclic 
loading tests below which no volume change occurs and is a critical parameter in evaluating 
earthquake phenomena such as seismic compression. Threshold strains were evaluated by 
Vucetic (1994) and Hsu and Vucetic (2004) by simply plotting vertical strain versus shear strain 
on a semi-log plot (linear scale for vertical strain), and the threshold strain was taken as the shear 
strain where vertical strains visually appear to be zero, or were projected to be zero. This 
approach is sensitive to the scaling of the y-axis and is subjective. The procedures described by 
Yee et al. (2010, in review), some of which are summarized above, offer the potential to 
establish a more robust definition of γtv for a given device. 
 We consider data obtained from DC-SS tests of cyclic volume change in an unsaturated, 
non-plastic silty sand material with 10% fines content known as Newhall#2. Figure 2 synthesizes 
the results of tests on numerous soil specimens on this same material. Vertical displacement 
results are shown for vertical strain at 15 cycles (εv,N=15) as a function of the applied cyclic shear 
strain amplitude (γc). Confidence intervals (95%) are shown both for the shear and vertical strain 
readings. The shear strain intervals were calculated using a statistical processing technique 
described in Yee et al. (2010) and are narrow and not clearly visible on the plot. Also shown is 
the histogram of noise from the vertical sensors expressed as an equivalent normal distribution 
with zero mean and standard deviation = 0.001 mm along with the 95% confidence interval on a 
zero mean reading for a typical signal duration (25 sec). Note that all of the data points at shear 
strains γc < 0.06% fall within the range of the zero-mean noise histogram, hence simple visual 
inspection of these data would not provide satisfactory results. 
 We propose that data with vertical displacements having a confidence interval that spans 
zero may be reasonably interpreted as being below the volumetric threshold shear strain. 
Similarly, data points whose confidence intervals do not include zero are considered to be above 
threshold. Using these criteria, the data in Figure 2 indicate a volumetric threshold shear strain of 
γtv = 0.03% for this Newhall#2 soil material. 
 Figure 3 shows the variation of vertical strain with shear strain for the Newhall #2 
material with 10% fines content over a relatively wide strain range. Figure 3(a), drawn with a 
linear vertical strain axis, illustrates the potential error associated with assigning a volumetric 
threshold shear strain based on simple visual interpretation of data plotted in this form, which 
would result in a γtv value of approximately 0.1%. Figure 3(b), drawn with log axes, shows a 
linear trend in the vertical strain-shear strain plot. However, the data points at vertical strains 
below approximately 0.0025% are not significantly different from zero, and hence fall below γtv 
per our definition.  
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Figure 2.    Plot of sample test data (N=15) with error bars against vertical noise signal 

distribution (no vertical movement). 
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Figure 3.    (a) Sample horizontal feedback signal noise and (b) distribution of sample horizontal 

feedback signal noise with normal fit to the data. 
 

Conclusions 
 
 We summarize critical aspects of statistical methods designed to facilitate interpretation 
of cyclic test results in the small amplitude range. At these small strains, feedback signals can 
visually appear to be dominated by noise for many testing devices that are not designed 
specifically for small strain testing. Previous work by Yee et al. (2010) describes procedures for 
evaluation of shear strain amplitudes and their confidence intervals. For vertical strains, Kernel 
regression with the Nadaraya-Watson estimator and a Gaussian kernel was utilized for signal 
processing. The calculated response is dependent on the bandwidth, which is expressed as a 
kernel regression parameter. Values for this parameter are selected by minimizing the difference 
between the bias and 95% confidence interval range.  
 Applying these methods to DC-SS tests of cyclic volume change of a dry soil material 
enables a relatively robust assessment of volumetric threshold shear strain relative to approaches 
described in previous literature. Tests where the 95% confidence interval of the vertical response 
spans zero displacement is interpreted to be below the threshold shear strain. These criteria 



estimate a volumetric threshold shear strain of 0.03% for a dry sand material with 10% low-
plasticity fines. 
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