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ABSTRACT 
 
 Correlating damage level and changes in dynamic characteristics of a structure 

forms the basis for damage detection techniques in structural health monitoring. 
In buildings such correlation is not well established. A vibration-based damage 
detection technique capable of identifying the structural condition of the system 
based on small amplitude vibrations is desirable because such data are typically 
easy to obtain. It is a common practice in engineering applications to estimate 
dynamic parameters from small-amplitude vibrations assuming a linear behavior 
of the structure. This simplification causes inaccurate estimations of those 
dynamic parameters due to the presence of nonlinear behavior in the structure. 
This study focuses and presents the relationships found between small-amplitude 
vibration dynamic properties and past levels of maximum displacement in various 
reinforced concrete structures. One full-scale 3-story building and six small-scale 
beams were examined. Small displacements are defined as displacements below 
an overall drift ratio of 0.03%. Approximations in the estimates due to a linear-
assumption model are avoided by examining the displacement-dependence of the 
dynamic properties. 

 
Introduction 

 
 Vibration-based structural damage detection is a growing field in different disciplines. 
Extensive work has been done in the past to provide tools to estimate physical parameters of 
structures through their vibration records. The usual approach in structural damage detection, also 
known as structural health monitoring, is to monitor changes in those parameters due to a particular 
event. However, the relationships between change in dynamic response characteristics and 
structural condition of reinforced concrete structures are still not established, and the sensitivity of 
these relationships are not well-understood. 

 
Linear-parameter estimates on nonlinear systems 

 
 The equation of motion for a single degree of freedom (SDOF) system can be written as 
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where m, ζ and ω are the mass, viscous-damping ratio and undamped natural frequency of the 

SDOF and x, 
.
x  and 

..
x  are the displacement, velocity and acceleration of the system. The 

external force applied to the system is represented by F(t). In the most general case for civil 
engineering applications where the mass is constant, representation of an elastic SDOF system 
through Eq. 1 would include the nonlinear behavior of the structure coming from variable 
stiffness and damping. Such nonlinear behavior has been identified by several authors in 
reinforced concrete structures as an amplitude-dependence effect (Clinton et. al. 2006, Celebi 
1996, Galambos et. al. 1978, Jeary 1997, Trifunac 1972). While stiffness has been proposed as a 
displacement-dependent parameter in most of the cases, damping has been proposed as a 
displacement-dependent and velocity-dependent parameter (Wu et. al. 2007, Feldman 2007). 
 

Estimates of natural frequency and damping in civil engineering applications are 
typically done through the Fourier Spectrum and the logarithmic decrement technique. These 
estimations correspond to linear-based formulations due to the stationarity assumption of the 
Fourier Transform (Oppenheim et. al 1986) and the linear-system assumption on which the 
logarithmic decrement technique is based (Clough 1975). In the presented work behavior of 
nonlinear elastic systems with displacement-dependent stiffness and viscous damping  is 
investigated. Following is an example of frequency and damping estimates obtained through the 
aforementioned linear-model assuming methods applied on a nonlinear elastic system. The 
nonlinear elastic system is defined with displacement-dependent stiffness and damping 
parameters. 
 
Linear-frequency estimate on a nonlinear elastic system 

Fig. 1 (a) illustrates the load-displacement curve of an elastic non-linear softening 
system. Mass was defined as m = 1. The displacement-dependent parameters of stiffness (secant 
stiffness) and damping are given as k(x) = 4π|x|- 0.5 and ζ(x) = 0.01+0.01|x|. The free vibration 
response of the system starting from an initial displacement and zero velocity is shown in Fig. 
1(b). The corresponding Fourier Spectrum of the response is given in Fig. 1 (c). The natural 
frequency of the system identified by the largest peak in the Fourier Spectrum is 1.1 Hz, 
however smaller peaks are observed in the spectrum due to the nonlinear nature of the system. 
 
Linear-viscous damping estimate on a nonlinear elastic system 

Fig. 2 shows the estimate of damping obtained by applying the logarithmic decrement 
method on the free vibration response of the nonlinear system of Fig. 1. In Fig. 2 (a) the peaks 
used to compute the equivalent linear viscous damping ratio are shown and in Fig. 2 (b) the 
equivalent linear viscous damping is compared to the actual displacement-dependent viscous 
damping defined for the system. A maximum difference of sixty percent is found between the 
estimated linear values and the actual values. 
 

Frequency and damping estimates considering the nonlinear behavior 
 
 As a result of the displacement-dependence of the frequency and viscous damping ratio, 



an elastic structure exhibits different values of frequency and viscous damping ratio at each 
instant of its free vibration response. Here two methods used to estimate the instantaneous 
frequency and damping are described. 
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Figure 1.    Frequency estimate from free vibration of a nonlinear elastic system. (a) Load-
displacement curve. (b) free-displacement response. (c) Fourier spectrum. 
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Figure 2.    Damping estimate from free vibration of a nonlinear elastic system.  
(a) Load-displacement curve. (b) free-displacement response. (c) Fourier spectrum. 
 
Instantaneous frequency through Hilbert Transform 

The Hilbert Transform of a signal x(t) is defined as 
 

 
du

ut
uxtx ∫

∞

∞− −
=

)(
)()('

π
 (2) 



Using Eq. 2, it is possible to obtain an analytical signal X(t) of the original signal x(t) as 
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where A and θ are the instantaneous amplitude and phase angle, respectively. Using Eq. (3), the 
instantaneous frequency of the signal can be estimated as time derivatives of the phase angle. 
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Eq. 4 is used to estimate the instantaneous frequency of the freely vibrating SDOF given 

above (see Fig. 1). The corresponding instantaneous secant stiffness is computed as k = 4 π f 2. 
Fig. (3) shows a portion of the free vibration response in Fig. (1) and the estimated instantaneous 
stiffness. In Fig. 3 (b) the actual secant stiffness defined in the system (k(x) = 4π|x|- 0.5) is plotted 
for comparison. It is seen that instantaneous frequency estimated through Hilbert Transform 
produces accurate results at instants of peak-amplitude displacements but not elsewhere. 
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Figure 3.    Instantaneous stiffness. (a) Free vibration response.  

(b) Estimated and actual secant stiffness. 
 
Amplitude-dependent Damping obtained through Energy method 

The energy equilibrium between consecutive pair of peaks i and i+1 (peak displacement 
points) of the free vibration response of a SDOF system can be written as 
 

 iii DEPEPE += +1  (5) 
 
where iPE and 1+iPE are the potential energy at peaks i and i+1 and iDE

 
is the energy dissipated 

during the time the system moved from peak i to peak i+1. The potential energy terms are 
estimated as the area under the curve of restoring force P  versus displacement x as 
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where ix is the i-th peak displacement.  The dissipated energy formulated for the equivalent 
viscous damper can be written as 
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where
.
x  is velocity, it  and 1+it  are the instants at which the peak-displacements i and i+1 happen, 

respectively. The damping coefficient c is expressed through the mass m
 
and the displacement-

dependent damping ratio )(xζ
 

and circular frequency )(xω , as mxxc ⋅⋅⋅= )()(2 ωζ . The 
restoring force can be expressed as mxxxP ⋅⋅= 2)()( ω . Eq. 5 can be rewritten using these 
formulations and Eqs. 6 and 7 as 
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Using estimated circular frequency ω from Eq. 4 (ω = 2 π f) and the given response of 

the system (velocity and displacement), equivalent viscous damping ratio can be solved from Eq. 
8. This energy method is employed to compute the damping from the free vibration response of 
the nonlinear elastic system with stiffness and viscous damping defined as k(x) = 4π|x|- 0.5 and 
ζ(x) = 0.03+0.01|x|, respectively. The response is shown in Fig. 4. In Fig. 4 (b) the actual 
viscous damping ratio (as defined) and that obtained using the logarithmic decrement method are 
shown for comparison with the viscous damping ratio estimated using the energy method. 
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Figure 4.    Amplitude-damping obtained estimated through the Energy Method.  

(a) Free vibration response. (b) Comparison of ζ values. 
 

Experimental measurements in reinforced concrete structures 
 

 A full-scale three-story flat-plate building and six small-scale cantilever beams were 
tested in the laboratory. The dynamic properties were measured at small displacements after 
different large displacements were induced in the structure. The small displacements at which 



the dynamic tests were performed were bounded by a maximum overall drift ratio level of 
0.03%, which is below the cracking displacement of the structures. The maximum large 
displacement demand level used was 3.0% overall drift ratio for the full-scale structure (Fick 
2008) and 13% overall drift ratio level for the small-scale beams (Consuegra 2009). 
 
Full-scale three-story flat-plate building 
 

The test specimen was a full-scale two-span by one-span three-story reinforced concrete 
flat-plate structure consisting of six columns spaced at 20 ft in each direction supporting a 7 in. 
thick slab at each story (see Fig. 5). The story height of the building was 10 ft. A punching-shear 
failure was observed when the structure was pushed to 3.0% overall drift ratio. Table 1 lists the 
estimates of frequency and viscous damping ratio from free vibration response the full-scale 
structure after different large displacement states. Natural frequency has been estimated by the 
largest peak in the Fourier Spectrum and equivalent viscous damping ratio through the 
logarithmic decrement. It is seen that dynamic properties measured at a given condition in the 
structure are sensitive to the initial displacement given at the roof level (Δ roof). However, 
because of the amplitude decreasing characteristic of the test, dynamic properties estimated via 
linear-based methods provide only a rough estimate of the displacement-dependent properties of 
the structure. 
 

 
 

Figure 5.    Full-scale three-story reinforced concrete flat-plate building  
at the Bowen Laboratory of Purdue University. 

 

One can obtain estimates of the dynamic properties in a fashion that allows proper 
comparison by examining the amplitude-dependence of the dynamic properties using the Hilbert 
Transform method for frequency estimate and the Energy method for the damping estimate, as 
described earlier. Alternately, steady-state forced vibration tests could be performed at identical 
peak displacement levels, regardless of the forcing frequency, to eliminate variation of properties 
due to peak displacement level during tests. In forced-vibration tests on buildings, it is common 
practice to set the stroke or generated force of the dynamic linear actuator or the masses of the 
eccentric-mass shaker exciting the structure to constant amplitude. Then, different excitation 
frequencies in the vicinity of the natural frequency of interest are swept and a Transfer function 
(TF) is obtained as the ratio output/input for a given frequency. Eq. 9 shows the analytical TF for 
a linear SDOF system when the output is displacement and the input is the force (k: stiffness, ω: 
natural frequency, ζ: viscous damping ratio, Ω : excitation frequency). The type of Transfer 
Function (TF) obtained from the described, typically employed kind of forced-vibration test, 



corresponds to that based on a set of different amplitude displacement responses with increasing 
peak displacement response as the excitation frequency gets closer to the natural frequency. This 
type of TF is named herein as the “non-constant-displacement-response TF”. Another type of 
TF, named as the “constant-displacement-response TF”, could be obtained if the force amplitude 
is adjusted at each frequency step so the peak displacement response of the structure is kept 
constant regardless of the forcing frequency. Fig. 6 shows a comparison of the two types of TFs 
obtained for the building of Fig. 5 after the building has experienced an overall drift ratio of 
3.0%. A least-square best fit on each of the experimental TFs shown in Fig. 6 is made using Eq. 
9 with proper selection of the parameters k, ω and ζ . The fact that a better fit is obtained on the 
constant-displacement-response TF demonstrates that the structure exhibits nonlinear behavior 
even at such small displacements (below 0.03% roof mean drift ratio). This nonlinear behavior 
cannot be captured by using non-constant displacement response TF (as usually done in building 
tests) in conjunction with linear assumptions (as that of Eq. 8).  
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Table 2 summarizes the frequency and damping measured at different small 

displacements (below 0.03% overall drift ratio) after different large drift levels in the full-scale 
structure. Properties in Table 2 were obtained through constant displacement response TF type of 
tests. Natural frequency is observed to change as much as 45% in the range of low amplitudes 
for a given drift level, indicating the extreme dependency of natural frequency to the dynamic 
test displacement amplitude. It is seen from the dynamic tests done before and after an event, 
using the same low-amplitude displacement, that the natural frequency is sensitive to the large 
overall drift level. If the identical dynamic displacement level approach is not followed, 
however, erroneous conclusions could be made. For example, comparison of fundamental 
frequency measured at 0.10-in drift after experiencing 1.5% overall drift ratio and measured at 
0.01-in after experiencing 3.0% overall drift ratio (i.e. damaged condition) would lead to 
indifference at best. 
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Figure 6.    Transfer functions in the full-scale structure. (a) non-constant-displacement-response 
TF. (b) constant-displacement-response TF. 

 



 
 

Table 1.     Linear-based dynamic-property estimates from free vibration response in the full-
scale structure. Fundamental frequency and viscous damping ratio: f 1 and ζ 1 
respectively. 

Condition Δ roof [in] f 1 [Hz] ζ 1 [%]

As-built 0.020 1.9 0.8

After 1.5% drift 0.020 1.3 2.4
0.040 1.2 2.4
0.100 1.2 2.9

After 3.0% drift 0.020 1.0 2.4
0.040 1.0 2.6
0.100 0.9 3.0  

 

Table 2.     Linear-based dynamic-property estimates from forced vibration response in the full-
scale structure. Fundamental frequency and viscous damping ratio: f 1 and ζ 1 respectively. 

 

Condition Δ roof [in] f 1 [Hz] ζ 1 [%]

< 0.01(ambient) 2.0 -
0.01 1.9 0.8

< 0.01(ambient) 1.5 -
0.01 1.2 2.1
0.02 1.2 2.0
0.04 1.1 2.1
0.10 1.0 2.0

< 0.01(ambient) 1.1 -
0.01 1.0 2.2
0.02 0.9 2.6
0.04 0.9 2.5
0.10 0.8 2.5

As-built

After 
1.5% 

overall 
drift

After 
3.0% 

overall 
drift

 
 

Small-scale beams 
 

An extensive testing program was developed on six small-scale reinforced concrete 
cantilever beams (Fig. 7). The beams were subjected to pseudo-static cycles of increasing large 
amplitudes and the small-amplitude dynamic properties were obtained by means of free, forced 
and ambient vibrations (Consuegra 2009). Due to the limited space and for sake of brevity only 
results from constant displacement response TFs (obtained through forced vibrations), which 
permit direct comparison of properties at a given displacement level, are presented. Fig. 8 shows 
the variation of natural frequency and equivalent viscous damping ratio with large displacement 
levels (past maximum displacement) in the small-scale beam of Fig. 7.  Results from a typical 
specimen and dynamic properties measured at a constant tip-displacement of 0.003 in (0.01% 
overall drift ratio), are presented. Fig. 8 (a) and (b) have identical horizontal axis that illustrates 



tests performed from the pristine condition (zero) to the condition when the beam had 
experienced 13% overall drift ratio (3.7 in tip-displacement). The natural frequency is observed 
to decrease continuously with past maximum displacement, with more dramatic decrease in early 
cycles. On the other hand, the viscous damping ratio exhibits an early increase and then decrease 
behavior with past maximum displacement starting from pristine state. The past maximum 
displacement at which the viscous damping ratio goes from increase to decrease behavior 
corresponds to a displacement near the yield displacement. This displacement was identified 
during the pseudo-static cycle testing as the displacement at which yield capacity of the member 
was developed (approximating the nominal moment capacity Mn as As*fy*d). 
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Figure 7.    Small-scale cantilever beam. (a) Reinforcing details. (b) General view. 
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Figure 8.    Variation of dynamic properties with the past maximum displacement in a small-
scale beam. (a) Frequency. (b) Viscous damping ratio. 

 

 
Conclusions 

 
 Dynamic properties measured at small displacements in reinforced concrete structures 
(below 0.03% overall drift ratio) are susceptible to nonlinear behavior of the structures. 
Consequently, it is important to verify the validity of linear elastic model assumptions. Common 
forced vibration tests performed in buildings, i.e. “non-constant displacement response” type of 



forced vibration tests, cannot capture the nonlinear behavior of the structures at small 
displacements unless a nonlinear elastic model is considered. Because of the complexity of such 
models, alternative testing in which the structure is forced to respond at a certain peak 
displacement level, i.e. “constant displacement response”, could be used. Such an approach leads 
to a more consistent implementation of typically employed linear-response based models. 
Variation of small-amplitude dynamic properties with past large peak displacement levels in 
reinforced concrete structures could be tracked using test data obtained at identical small 
displacement levels.  
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