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ABSTRACT 
 
 A structural health monitoring system based on Bayesian damage classification 

and DNA expression data is studied in this paper. Transplanted from the DNA 
array concept in molecular biology, the proposed structural health monitoring 
system is constructed by utilizing a double-tier AR-ARX regression process to 
extract the expression array from the structural time history recorded during 
external excitations. The AR-ARX array is symbolized as the various genes of the 
structure in the viewpoint of molecular biology to reflect the possible damage 
condition existing in the structure. A scale-down six-story steel building located at 
the shaking table of the National Center for Research on Earthquake Engineering 
was used as the benchmark structure, and the structural response with different 
damage levels and locations under ambient vibration was collected to support the 
database for structural health monitoring. To improve the feasibility of the 
proposed structural health monitoring system in practical application, the system 
is upgraded again using the likelihood selection method. The AR-ARX array 
representing the DNA array of the health condition of the structure is first 
evaluated and ranked. Totally 30 groups of expression array are regenerated from 
the combination of six damage conditions.. To keep the coefficient number 
unchanged, the best four coefficients among every expression array are selected to 
form the optimized structural health monitoring system, and the sequence of the 
array coefficients is assembled based on the likelihood score calculated for each 
coefficient. Test results from ambient showed that comparing to the previous 
damage classification system, the detection accuracy of structural damage can be 
enhanced by the optimized AR-ARX array perfectly. The feasibility of 
transplanting the DNA array concept from molecular biology into the field of 
structural health monitoring has been demonstrated by the proposed SHM system. 

  
  

Introduction 
 
 Structural health monitoring (SHM), a brand new multidisciplinary field, gradually 
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emerges in various branches of engineering over the last fifteen years. Generally, SHM is 
defined as the implementing of damage detection and characterization strategy for engineering 
structures. For the regularity and mass production characteristics of the monitoring objectives, 
some developed SHM technologies have been successfully applied to aircrafts, vessels, and 
vehicles in both aeronautics and mechanical engineering. For civil engineering, the goal of SHM 
is to provide rapid condition screening and reliable information regarding the integrity of the 
structure in near real time after extreme events, such as earthquakes or blast loading. To reach 
this target, researchers have been focusing on developing some specific techniques and 
customized systems. 
 

Recently, how to apply the concept of pattern recognition technique to the field of SHM 
has been widely discussed. By using pattern recognition technique, the SHM system should be 
able to classify the measured data based on a priori knowledge or statistical information 
extracted from the collected patterns. As this concept is increasingly accepted by worldwide 
researchers, SHM systems based on pattern recognition technique are established and verified. 
For example, a novel time series analysis integrating pattern recognition is first proposed by 
Sohn et al. [Sohn and Farrar 2001]. The statistical process control (SPC) technique is then 
combined to improve the performance of the system [Sohn et al. 2000]. To prove the practical 
feasibility of pattern recognition based system, experimental data measured from full-scale civil 
structures are used. It is found that although damage can be consistently detected, however, 
problems still exist when localizing or quantifying are required [Cheung et al. 2008]. 
 

Bioinformatics, the application of information technology to the field of molecular 
biology, rapidly attracts the vision from researchers of all fields after it was coined in 1979. The 
research conducted by Dominggos and Pazzani demonstrates that attributes can be dependent in 
a simple Bayesian classifier (SBC) and makes the application of SBC in bioinformatics possible 
[Domingos and Pazzani 1996]. Later, the concept of gene expression monitoring was proposed and 
implemented by T. R. Golub in 1999 [Golub et al. 1999]. The new method offers a new vision for 
classifying cancer cells from normal ones and ignited a series of researches on detecting diseases 
from gene expression array. Following the study, a new research using Naïve Bayes (NB) 
algorithm to identify the DNA array of cells was proposed [Keller et al. 2000]. Different cancer 
cases were classified by comparing the DNA patterns of cells with the NB algorithm. According 
to the research result, the possible disease can be reliably diagnosed by the new proposed system. 
The subsequent research from Slonim et al. once again demonstrated the feasibility of combining 
the NB algorithm and the DNA array data for multi-class cancer diagnosis [Slonim et al. 2000]. 
 

Inspired by the above-mentioned researches, a new SHM system is proposed in this paper. 
The structural damage characteristic was first extracted by an AR-ARX model which is 
composed of a double-tier auto-regressive (AR) and auto-regressive with exogenous inputs 
(ARX) prediction model. By evaluating the AR-ARX array calculated from the measured 
structural response with the database created from different structural damage conditions under 
the support of NB algorithm, the possible damage location and level can be rapidly detected. As 
verified in the study, approximately 75-80% accuracy of the system was demonstrated. An 
optimization process using likelihood selection method is studied in this paper to improve the 
SHM system developed.



 

Experiment Verification 
 
 The proposed SHM system is composed of three parts: the AR-ARX expression array 
database which is converted from the time history of structural response under specific damage 
conditions, the Naïve Bayes method which has been demonstrated to have superior performance 
in array classification, and the likelihood selection process to optimize the SHM system. To 
verify the feasibility of the proposed SHM system in practical structure, a series of experiment 
was conducted on the scale-down six-story specimen at National Center for Research on 
Earthquake Engineering (NCREE). 
 
Ambient Vibration Test 
 

Different from monitoring the structural response during strong earthquakes, which is 
commonly seen in some existing SHM systems, the proposed system tries to use signals 
measured from ambient vibration in the daily life to enhance its practicability. The structure 
damages were classified into four major groups with 13 different cases and were simulated by 
loosening four of the 16 bolts in each floor (1/4 of the beam-column connection). By collecting 
the experiment database at night, the unwanted noise due to the machine operation or human 
activity from the laboratory can be carefully avoided and suppressed to improve the reliability of 
the structural feature arrays. A list of the thirteen damage conditions is listed in Table 1.   

 
As shown in Figure 1, six high-sensitivity velocity meters were deployed on the specimen 

to measure the micro vibration of each floor. The sampling rate was set to 200 Hz, and 90 cases 
with each of 20 seconds under every damage condition were recorded while the 13 damage cases 
were achieved by switching the location of the loosened fasteners. The SHM database was then 
established by transforming the time histories into the above mentioned AR-ARX models as the 
DNA array of the structure. The three fundamental parameters ( p, a, and b) of  the basic ARA- 
RX model described is designed to be 12-8-4 after an optimization process. Meanwhile, the 
advantage of utilizing array expression data for SHM is evaluated by using five different array 
orders of 60-40-20, 72-48-34, 84-56-28, and 96-64-32 under the basis of the 12-8-4 form. As 
indicated itself, the 60-40-20 AR-ARX array uses 120 coefficients to monitor the health 
condition of the structure, and the 96-64-32 AR-ARX array uses 192 coefficients accordingly. 
To execute the independent testing of the SHM system, 80 patterns in each damage case were 
used to create the SHM array database, and the rest 10 patterns were used to verify the 
performance of the system. The results of all 13 cases by sensor V6 is shown in Figure 2.  The 13 



 

damage cases are indicated in the longitudinal axis as UN, S1, S2, S3, S4, S5, S6, M12, M34, 
M56, S123, S234, and S456, and the detected damage condition is reflected in the latitudinal bar. 
The AR-ARX order is increased from 60-40-20 from the top subplot to the final 96-64-32 in the 
bottom subplot. All the 10 testing patterns are expressed by the individual bar among every 
damage case. 

 
According to the results shown in the figures, the performance of the SHM system can be 

enhanced by increasing the order of the AR-ARX array data. For the cases of 60-40-20 and 72-
48-24, serious fluctuation is observed among all testing cases. It is estimated that structural 
damage characteristics may not be reflected by using only few coefficients. With considering 
high-order array expression data, the minute damage existing in the structure can successfully 
detected. For the 96-64-32 AR-ARX system, the accuracy can be expected to approximately 85 
to 90 %. Although the feasibility of the proposed SHM system with high-order AR-ARX has 
been demonstrated by the previous examination, however, any SHM system without 100 % 
precision could still be classified as a failed system. For that reason, the developed SHM system 
is upgraded again by using the likelihood selection method in the next section. 
 

  
 
Figure 1.    The six-story specimen at NCREE 

 

Case 
Number

Second Stage 
Damage Group 

Damage 
floors 

1  Undamaged None 
2 

Slight damage 

1F 
3 2F 
4 3F 
5 4F 
6 5F 
7 6F 
8 

 Moderate 
damage 

1F&2F 
9 3F&4F 

10 5F&6F 
11 

 Severe 
damage 

1F&2F&3F
12 2F&3F&4F
13 3F&4F&5F

Table 1.    List of the 13 damage cases 



 

 
 

Figuere 2.    Independent testing result from ambient vibration of V6  
 
Likelihood Selection 
 

To assemble the optimal AR-ARX array for the SHM system , six of the thirteen damage 
cases were chosen, and the detail of the cases is shown in Table 2.  The reasons for choosing 
these specific cases are described as follows: As the length of the AR-ARX array should be kept 
the same before and after the optimization process, the optimization strategy was decided to be 
selecting the best 16 coefficients from the 12 (4*3) combinations. The expression of how to form 
the final AR-ARX array is depicted in Figure 3. Meanwhile, since different structural 
characteristics can be reflected more easily when the damages are located in the lower level of 
the structure, the six cases with lower-story damage were focused.  Following the designed 
process, the optimal 96-64-32 AR-ARX array was formed. 

 
As mentioned before, totally 90 ambient vibration patterns with  20-second time history 

each were collected in the training database. That is, 1170 (90*13) AR-ARX arrays were 
transformed from the time history records and deposited for different sensors. To increase the 
robustness of the proposed SHM system, the velocity meters on the 4th, 5th, and 6th floor were 
used as the detection units.   
 

Case 
Number 

Second Stage Damage 
Group Damage floors 

Table 2.     The four cases for likelihood    
selection 



 

 

 

 
Figure 3.    Expression of the optimization process  

from the 12ikelihood combinations 
 

As mentioned in the previous “likelihood＂ section, the array components with both 

large likelihood scores jiLIK → and ijLIK → where i and j represent different damage classes, in all 

the 12 combinations offer the strongest support to detect the possible existing damages on the 
structure. Namely, the 12 different likelihood scores are compared independently to optimize the 
AR-ARX array. A typical selection case of coefficients by the likelihood score of sensor V5 is 
shown in Table 3. Six different likelihood scores 21→LIK 、 31→LIK 、 41→LIK 、 12→LIK 、 32→LIK  
and 42→LIK are picked up to illustrate the detail of the likelihood selection concept. As indicated 
in the table, the calculated likelihood scores of array components 40 and 41 in 12→LIK  are 

54.40345 and 27.95874, which are relatively larger than the score of coefficients 39 and 42, 
as2.1233 and 2.053146 respectively. For the superior classification ability demonstrated by the 
likelihood score, these two components were selected to form the final optimized AR-ARX array. 
On the other hand, the likelihood scores of coefficient 25 are always relatively small when 
comparing to all the other component. This phenomenon demonstrates that structural 
characteristic under different damage conditions can not be reflected by coefficient 25, and all 
the array components with similar performance are carefully eliminated by the likelihood 
selection procedure. 
 
Table 3.    Demonstration example of                                    Table 4.    Demonstration example of 

likelihood score selection                                                        likelihood score ranking 
 
No. of 
pattern 38 39 40 41 42 

1 Undamaged None 

2 Slight damage 1F 

4 Moderate damage 1F&2F 

6 Severe damage 1F&2F&3F 



 

LIK
1 2

  2.23712 22.97841 89.96941 147.5671 19.69415

LIK
1 3

  2.63377 23.25147 88.52593 78.76473 5.374351

LIK
1 4

  0.37254 17.04579 65.89551 26.63637 9.583765

LIK
2 1

  19.0049 2.1233 54.40345 27.95874 2.053146

LIK
2 3

  14.5312 10.6244 64.8015 23.02377 32.80946

LIK
2 4

  109.877 223.1202 802.8338 134.1232 64.80946

 
To clearly illustrate the concept of likelihood selection,  the best seven coefficients of the 

96-64-32 AR-ARX array selected by utilizing 21→LIK 、 31→LIK 、 41→LIK 、 12→LIK 、 32→LIK  and 

42→LIK  among the 12 (4*3) combinations of sensor V6 are shown in Table 4. It is found that 

coefficient 40 was chosen six times which reflects the importance of this coefficient in this case. 
Similarly, coefficient 41 was also used three times to form the final AR-ARX array. By 
combining the best 16 coefficients in the 12 likelihood selection cases, the original 192 AR-ARX 
coefficients with equal weighting to every array component can be optimally organized again to 
obtain better SHM result. 
 

The performance of the enhanced system was then verified and compared with the 
original system by 10 independent testing patterns. As the likelihood selection was conducted 
based on the 96-64-32 AR-ARX array, classification result with the same coefficient number is 
expressed. The accuracy and reliability of the SHM system before and after optimization is 
depicted in Figures 4 where some major enhancements are especially enlarged. It is investigated 
that the unexpected fluctuation can be largely improved by the optimized AR-ARX array. For 
example, the obvious spikes of sensor V6 in cases 2, 3, 5, 9, and 10 before the optimization are 
successfully suppressed by the new system. Alike phenomenon was also seen from the results of 
V5 in Figure 4. Moreover, the serious misclassification of class 2 of sensor 5, which indicates 
that the structure is under a “Slight” damage condition, was corrected by the new AR-ARX array. 
The trend that higher sensor can offer a better detection answer is kept in the new version of the 
SHM system. By rearranging the optimal coefficient sequence from comparing the different 
likelihood scores, the accuracy and consistency of the SHM system can be enhanced as desired. 
On the other hand, for the cases which can be correctly identified by the original AR-ARX array, 
the classification results will not be deteriorated by the optimization process. The robustness of 
the likelihood selection method is once again demonstrated. 

 

Rank LIK LIK LIK  LIK  LIK LIK

1 41 40 21 40 40 15

2 40 41 40 36 2 2 

3 29 17 34 11 25 10

4 33 61 35 41 5 40

5 36 67 22 4 22 30

6 37 11 15 10 10 33

7 35 36 62 72 36 36



 

 
 

Figure 4.    Classification results from the sensors on the 4th, 5th, and 6th floors before and after 
optimization 

 
To improve the feasibility of the developed SHM system in practice, the concept of union 

in statistics was introduced into the system. For the observation trend that sensors on the higher 
floor may offer a better classification performance, the three sensors deployed on the 4th, 5th, 
and 6th floors were utilized as the input source, and the result of each event is filled with the 
union of the individual outcome from each sensor illustrated between the parentheses. The final 
decision was then obtained by these three respective values, and the consequences are listed in 
the last row of  Table 5. 

 
In order to verify the performance of the proposed SHM system in practice, the optimized 

system was tested by using three different events with an independent 20-second measurement 
each from the original database. Namely, a rapid and reliable result should be provided by the 
final SHM system within one minute, which is considered as a tolerable timing for pragmatic 
application. As shown in figures 5, the blue bars indicate the existing damage condition on the 
structure, and the brown bars show the detected damage condition from the SHM system. Only 
two misclassifications were found in the cases 2 and 9. The first event of “1F” in Table 1 is 
slightly classified as “2F”, and the second event of “3F&4F” is misplaced as “1F&2F”. 



 

Satisfactory results were reached in all the other 37 cases by the proposed SHM system. 
Moreover, all the damage levels can be precisely described by utilizing the signal from the 
sensor on the 6th floor. The trend has shown that the accuracy of the SHM system with the 
optimized AR-ARX array can be upgraded to approximately 90% (35/39) and 95% (37/39). 
However, a system without 100% precision cannot be grouped as a successful system. 

 
As shown in the Table, the SHM system can now provide a rapid damage evaluation 

within 1 minute (3X 20 sec). Accompanying with the introduction of union into the system, the 
“null” result may be concluded by the system. For example, the first event of damage class 2, the 
respective classifications are 2, 1, and 3 for sensors on the 4th, 5th, and 6th floors. According to 
the theory of union, no conclusion can be made by the system and the column was represented 
by the question mark. Similar phenomenon was also indicated in the second event of class 5, 
where damage occurred in the 4th floor. The classification results from sensors on the 4th, 5th, 
and 6th floors are 8, 7, and 5, respectively. Obviously, the system was confused by the first two 
misclassifications, and a question mark was filled again. Nevertheless, by introducing the 
concept of union again among the three separate events, the final result obtained by the union of 
the three 20-second events shown in the last column has demonstrated that the structural damage 
condition can now be perfectly indicated as the accuracy rate is raised from 90 to 95 % to 100 %. 

 
A reliable classification performance among all the 13 cases operated within only one 

minute can be guaranteed by the integrated system. It is believed that the practical application of 
this developed system can be implemented easily on real structures in the near future. 
 



 

 

 
Figure 5.    Practical Verification of three different events by the sensors on the 6th floor 

 
Table 5.    Verification of the final SHM system (V4∪V5∪V6) 

 
Class Event1 Event2 Event3 Final Result 

1 1(1/1/1) 1(1/1/1) 1(1/1/1) 1 

2 ?(2/1/3) 2 (2/1/2) 2 (2/2/2) 2 

3 3(3/3/3) 3 (3/3/3) 3 (3/3/3) 3 

4 4(4/4/4) 4 (4/4/4) 4 (5/4/4) 4 

5 5(5/5/5) ? (8/7/5) 5(5/5/5) 5 

6 6(6/6/6) 6(6/6/6) 6 (7/6/6) 6 

7 7(7/7/7) 7(7/3/7) 6 (6/6/7) 7 

8 8(8/8/10) 8 (9/8/8) 8 (8/8/8) 8 

9 9(9/9/9) 9(9/8/9) 9(9/9/9) 9 

10 10(10/10/10) 10(10/10/10) 10(10/10/10) 10 

11 11(11/11/11) 11(11/11/11) 11(11/11/11) 11 

12 12(12/12/12) 12(12/12/12) 12(12/12/12) 12 

13 13(13/13/13) 13(13/13/13) 13(13/11/13) 13 

 



 

Summary and Conclusion 
 
 An ambient vibration based SHM system using the concept of AR-ARX array, Naïve 
Bayesian damage classification, and likelihood selection is proposed in this research. By using 
the ambient vibration data measured from three different floors of a scale-down six-story 
building located at NCREE, which can be easily achieved in our daily life, a specific data array 
was extracted and treated as the DNA array of the structure to form the SHM database. Based on 
the Naïve Bayesian damage classification, the coefficients obtained from any unknown damage 
case was compared with the individual mean values and standard deviations of the array in the 
precollected database of multiple damage conditions to detect the possible damage location and 
level of the structure. According to the experimental study, approximately 80% of the practical 
damage situation can be indicated by the structural monitoring system. 

 
To improve the reliability of the system, the likelihood selection method was applied to 

optimize the data array of the structural health monitoring system. In order to keep the array size 
as the original detection system, which was decided to be in the form of 96-64-32, four of the 
thirteen damage cases were picked up, and the optimized data array was combined from 
the12(4*3) likelihood equations with the best 16 coefficients in each case. The damage 
conditions were then verified again by the optimized Bayesian classification method. It is evident 
that the stability of the SHM system can be successfully improved by the optimized data array. 
Unexpected fluctuation phenomena observed in the previous monitoring results were corrected 
and the accuracy of the system was improved to be 90-95%.Finally, SHM system was 
strengthened again by integrating the union concept to the system for practical application. The 
results from three sensors detecting the health condition of the structure in one minute strongly 
support the feasibility of the proposed system in practice. 
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