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ABSTRACT 

 
To determine the appropriate effective stiffness of concrete cantilever walls, the results from 
linear dynamic analyses using different effective stiffness assumptions for concrete walls were 
compared with the results from numerous nonlinear dynamic analyses. The nonlinear dynamic 
analyses were done using a nonlinear hysteretic model for concrete shear walls implemented into 
OpenSees. The study included 13 different walls with a range of nonlinear properties reflecting 
the range for typical concrete cantilever shear walls designed in Canada. The initial fundamental 
periods of the walls ranged from 0.5 to 4 seconds. Forty ground motions modified to fit a design 
spectrum were used. The elastic demand to flexural strength of walls (R) was varied from 0.5 to 
5.0. It was found that the most important parameter is the ratio of elastic demand to strength of 
wall and that generally the effective stiffness of concrete walls does not reduce below about 50% 
of the stiffness of an uncracked wall for R values up to 5.0.  
 

Introduction 
 

One of the most important steps in the design of high-rise concrete shear wall buildings is 
estimating the maximum drift demands for the design earthquake, and in Canada, this is 
normally done using Response Spectrum Analysis (RSA). The effective stiffness (flexural 
rigidity) EIe of the walls that are used in such analyses must account for the nonlinear response 
of walls due to cracking of concrete. Usually, a single reduction factor α = Ie/Ig is used for an 
entire concrete wall. Very different recommendations currently exist. FEMA 356 recommends a 
factor of 0.8 for uncracked walls and a factor of 0.5 cracked walls. The commentary to the 1995 
New Zealand concrete code recommends a reduction factor of 0.25 for a concrete wall with no 
axial compression force and a factor of 0.35 for a wall with an axial compression force equal to 
0.1fc'Ag. According to the Canadian concrete code for buildings (CSA A23.3 2004), the effective 
stiffness of concrete walls is a function of axial compression stress ratio P/ (fc'Ag) and is equal to 
0.7 for a wall with an axial compression force of 0.1fc'Ag. 

In the current study, nonlinear dynamic analysis was used to estimate the effective 
stiffness of concrete cantilever shear walls. For this purpose, a simplified force – displacement 
relationship for concrete cantilever walls was developed. The model includes a backbone curve, 
rational rules for stiffness degradation, simplified rule for unloading, and an empirical rule for 
mid-cycle reloading. The results of the nonlinear dynamic analysis were used to estimate the 
stiffness reduction factor. 
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Hysteretic Force – Displacement Relationship 
 

Figure 1 shows a general schematic of the simplified force – displacement model. The 
model remains linear until shear force reaches Vco, which corresponds to shear at crack opening 
and is a function of lower – bound bending moment, MLB, (Adebar and Ibrahim 2002) and lateral 
load distribution acting on the wall. Note that Vco is slightly smaller than the shear force at 
flexural cracking, Vcr. The slope of the linear segment, ki, is the initial stiffness of the wall and 
depends on the wall height and gross section stiffness, EIg. Once the shear force exceeds Vco, the 
loading path follows a nonlinear curve until it reaches the shear at the flexural capacity of the 
wall, Vn. A fourth – order polynomial defines the nonlinear section of the backbone curve. The 
solution of the polynomial requires five pieces of information to determine five constants of the 
polynomial. Four constants can be determined by inserting the position of start and endpoints of 
the curve as well as the slope of the curve at these points. The fifth constant can be obtained by 
defining an additional point that the curve must pass through between the start and endpoints of 
the curve.  
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Figure 1. Hysteretic force – displacement response of cantilever shear walls used for nonlinear        

dynamic analysis. 
 

The displacement at flexural capacity, ΔyUB, is calculated by integrating the curvatures 
determined from the bending moment diagram using the trilinear moment- curvature relationship 
for the wall (Adebar and Ibrahim 2002). For displacements greater than ΔyUB, the envelope is 
defined by a linear segment with a slope equal to 2% of the initial stiffness k

B

i to model strain 
hardening of the reinforcement.  



 
The hysteretic path consists of a series of linear paths radiating from Vco to a point on the 

envelope corresponding to maximum previous displacement. The slope of the loading paths tend 
to decrease as displacement increases; however, in the cases that ΔyLB is exceeded, all subsequent 
loading follows the lower bound trilinear reloading path regardless of maximum previous 
displacement. Lower bound yield displacement, ΔyLB, is calculated by integrating curvatures 
determined from lower bound trilinear moment – curvature relationship over the height of the 
wall.  

Unloading paths return linearly from maximum displacement to shear force at crack 
closing, Vcc. This parameter is a function of bending moment at which cracks will close due to 
the presence of axial load. For simplicity, it is assumed that the unloading point is located at the 
linear segment of the force – displacement envelope, i.e. zero residual displacement when 
pushing back the wall to the origin. Also shown in Fig.1 is the case that residual displacement is 
included by moving the unloading point from the linear segment of the backbone to a point with 
the same vertical coordinate but different horizontal coordinate values.  

For mid-cycle reloading, the reloading path follows the initial slope ki from the point 
where it leaves the unloading path. The reloading path intersects and follows a linear path from 
Vco to maximum previous displacement. In the cases that maximum previous displacement 
exceeds ΔyLB, mid-cycle reloading follows the initial stiffness ki until it joins the lower bound 
reloading path. 

The hysteretic force – displacement model presented in Figure 1 can be fully determined 
by knowing key parameters ki, Vco, Vn, ΔyUB, ΔB yLB, and Vcc. The hysteretic model was 
implemented in OpenSees (Korchinski 2007) to conduct nonlinear dynamic analysis of concrete 
shear walls. The aim of this work is to investigate how the shape of force – displacement curve 
influences the effective stiffness. Therefore, it is necessary to generate a realistic range of the key 
parameters of the hysteretic model so that the walls included in the analysis can be regarded as a 
reasonable representation of practical shear walls.  

The parameters of the hysteretic model are a function of the corresponding bending 
moment and the distribution of lateral loads over the height of the wall. Wall geometry, axial 
load level, and amount of vertical reinforcement can also influence the shape of the force – 
displacement curve. In order to develop a realistic range of the key parameters, a series of 
rectangular and flanged walls with different aspect ratios were studied. Web reinforcement ratio 
was assumed to be 0.25% for all walls. Flanged reinforcement ratio was varied from 0.5% to 2% 
for flanged walls and from 1% to 4% for rectangular walls. Axial load was also varied from 0 to 
0.3fc'Ag. Table 1 presents the practical range of key parameters of the hysteretic force – 
displacement model. Each wall is labelled by a combination of “L” and “R” characters. “L” 
stands for Linear and the number after this character is a representative of the ratio of Vco/Vn. “R” 
stands for Reinforcement and is followed by a number which refers to the ratio of the secondary 
slope ks to the initial slope ki.  

 
 
 
 
 
 
 



 
Table 1. Parameters that define the hysteretic response of the 13 walls considered in the study. 

 
Walls nco VV /  ncc VV /  is kk /  niyUB Vk /Δ  niyLB Vk /Δ  

W-L2-R3 0.20 -0.20 0.286 2.00 3.00 
W-L2-R2 0.20 -0.20 0.167 2.70 5.00 
W-L2-R1 0.20 -0.20 0.103 3.50 8.00 
W-L4-R4 0.40 0.0 0.375 1.60 2.00 
W-L4-R2 0.40 0.0 0.167 2.60 4.00 
W-L4-R1 0.40 0.0 0.107 3.20 6.00 
W-L5-R3 0.50 0.15 0.333 1.70 2.00 
W-L5-R2 0.50 0.15 0.167 2.40 3.50 
W-L5-R1 0.50 0.15 0.111 2.80 5.00 
W-L6-R3 0.60 0.30 0.286 1.65 2.00 
W-L6-R2 0.60 0.30 0.167 2.10 3.00 
W-L6-R1 0.60 0.30 0.118 2.40 4.00 
W-L8-R2 0.80 0.60 0.167 1.40 2.00 

 
Ground Motions Used for Dynamic Analysis 

 
Nonlinear dynamic analyses were performed using a set of forty ground motions taken 

from the suite of ground motions used in ATC 55 project (ATC 2005). Of these forty ground 
motions, twenty motions were recorded on site class B, and twenty motions were recorded on 
site class C. The ground motions correspond to eight different ground motions with magnitude 
Ms from 6.1 to 7.1 and peak ground acceleration from 48.9 to 504.2 cm/s2. The forty ground 
motions were altered to a suite of modified ground motions such that the acceleration spectrum 
for these ground motions matches a prescribed target spectrum. The modified ground motions 
were created using computer program SYNTH (Naumoski 2001). This computer program 
modifies the initial recorded accelerogram (called initial or input accelerogram) until its 
spectrum matches the target spectrum. The target spectrum was a modified version of the 
National Building Code of Canada (NBCC 2005) design spectrum for Vancouver BC for soil 
type C. Figure 2 shows the NBCC design spectrum as well as the modified design spectrum. The 
actual NBCC design spectrum varies linearly between periods of 2 and 4 seconds and it remains 
constant for periods greater than 4 seconds, while the modified version of NBCC design 
spectrum decreases proportional to 1/T for periods between 2 and 6 seconds. It should be 
mentioned that the spectral acceleration values at 2 and 4 seconds are identical for both 
spectrums. For modified design spectrum, the decrease was set proportional to 1/T2 for periods 
greater than 6 seconds. It means that spectral displacement ordinates remain constant over this 
period range.  

Also shown in Figure 2 is the ASCE7-05 design spectrum for site class C for Seattle. The 
ASCE7-05 design spectrum consists of a linear segment where spectral acceleration increases 
with period, a flat plateau, a portion in which spectral acceleration decreases proportional to 1/T 
for periods less than the long-period transition period, and finally a segment where the reduction 
in spectral values was set proportional to 1/T2. It can be observed that the modified version of the 
NBCC design spectrum is more consistent with ASCE7-05 design spectrum for longer periods. 
The modified NBCC design spectrum was used as the input design spectrum in computer 



program SYNTH because the displacement spectrum corresponding to this design spectrum is 
more compatible with the mean displacement spectrum of the ground motions used in this 
analysis. The displacement spectrum for the forty modified ground motions is presented in 
Figure 3. The displacement spectrum corresponding to the modified design spectrum is also 
shown in Figure 3 with a thick line. 
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Figure 2. Comparison of Modified NBCC spectrum (M – NBCC) with NBCC design spectrum 

for Vancouver (NBCC) and ASCE7-05 design spectrum for Seattle (ASCE7-05). 
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Figure 3. Displacement spectra for Modified ground motions. 



Analysis Procedure 
 

Modified ground motions were used as input ground motions in this study, and the 
damping was assumed to be 3 percent of critical damping. In addition, it was decided to scale 
ground motions to achieve different strength reduction factor R, rather than modifying the wall 
strength for various periods. It was done since all structural walls have the same initial stiffness 
and flexural capacity. It should be noted that strength reduction factor was defined as the ratio of 
the elastic force demand over the wall strength. Period of the structural walls was varied from 0.5 
second to 4.0 seconds at 0.5 second intervals and for each period, a range of R values between 
0.5 and 5.0 was considered. All structural walls were modelled as single degree of freedom 
systems. The walls have the force – displacement relationship similar to what was shown in 
Figure 1. All nonlinear time history analyses adopted the Newmark integration method with 
coefficients β = 0.5 and γ = 0.25. The time step was set equal to 0.005 s. The Newton-Raphson 
iteration method was used to satisfy equilibrium at each time step. The mass m of the SDOF 
system was adjusted in order to achieve different periods, and it was kept constant for each 
respective period. This approach required using different masses for different periods because 
the initial stiffness ki was kept equal for all structural walls.  

For each period and R value, maximum nonlinear displacement of the structural walls 
was recorded for the forty ground motions. The mean nonlinear displacement of the ground 
motions was then used to define the effective period and consequently effective stiffness. 
Effective period was defined as the period of an equivalent linear system with the same spectral 
ordinate as the mean displacement from nonlinear time history analysis. For the modified ground 
motions, however, the mean displacement spectrum for the forty ground motions matched the 
design spectrum very well (Figure 3). Therefore, using either design spectrum or mean of the 
ground motions would result in the same effective periods. However, the design spectrum was 
used for modified ground motions since it varies linearly for the periods ranging from 2 to 6 
seconds, and therefore effective period can be determined by interpolating between the elastic 
displacements at the initial period and period of 6 seconds. The effective stiffness is determined 
from the effective period and the stiffness reduction factor α is determined from the ratio of 
stiffnesses, i.e. α = ke/ki. The stiffness reduction factor is assumed to be the ratio of effective 
flexural rigidity EIeff to gross flexural rigidity EIg.  
                                                                                                              

Analysis Results 
 

The results of the analysis for three periods of 1.0, 2.0 and 3.5 seconds for the thirteen 
walls are shown in Figure 4 through 6. The results correspond to the mean nonlinear 
displacement of the forty modified ground motions at a specific R value and initial period. Note 
that it was also possible to determine effective stiffness reduction factors from the mean plus one 
standard deviation displacements. Although reduction factors from mean plus one standard 
deviation are less than those corresponding to mean nonlinear displacements, the difference is 
not significant since the forty ground motions are fitted to the design spectrum and hence the 
standard deviation for these ground motions are much less than the unmodified ground motions. 
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Figure 4. Stiffness reduction factors for thirteen different walls with an initial period of 1 s. 
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Figure 5. Stiffness reduction factors for thirteen different walls with an initial period of 2 s. 
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Figure 5. Stiffness reduction factors for thirteen different walls with an initial period of 3.5 s. 
 

Several observations can be made regardless of which initial period was used in the 
analysis: (a) effective stiffness reduction factor is close to 1.0 for low R values. This means that 
effective period of the equivalent linear system is nearly the same as the initial period of the 
nonlinear model. It happens since most of the walls have barely passed the cracking point at low 
R values, and therefore most of the wall section is in the linear phase. As a result, nonlinear 
displacements are nearly equal to linear displacements, resulting in reduction factors close to 1.0. 
(b) thirteen walls described in Table 1 can be divided into groups of common Vco/Vn values. All 
walls in these groups have the same closing point, Vcc; however, these walls have different upper 
and lower bound force – displacement curves. The lowest effective stiffness within these groups 
belongs to the wall with the lowest lower bound stiffness. It happens since as the area between 
the loading and unloading decreases, hysteretic energy dissipation per cycle decreases and 
therefore, nonlinear displacement demand increases. Thus, walls W-L2-R3, W-L4-R1, W-L5-
R1, and W-L6-R1 have lower effective stiffness reduction factors than other two walls with the 
same Vco/Vn values. (c) W-L8-R2 has consistently the lowest effective stiffness values regardless 
of the initial period. This wall has the smallest difference between loading and unloading paths 
meaning that the amount of energy dissipated by this wall is the least amongst the thirteen walls. 
This observation contradicts the initial prediction since W-L8-R2 has the highest axial load and 
consequently highest area under the curve. It means that if the area-under-the-curve method is 
used to determine effective stiffness, this wall must have the highest effective stiffness. 
However, the method to determine effective stiffness in this work is based on displacement 
demands and maximum displacement demands of a shear wall is influenced by both loading and 
unloading characteristics of force – displacement relationship. 

Note that an additional analysis was carried out to examine the influence of energy 
dissipation on effective stiffness reduction factor. This was done by comparing the results of two 
walls having the same cracking point, upper and lower bound yield displacements but different 



closing points. For this purpose, the crack closing point for wall W-L5-R3 was changed from 
0.15Vn to 0.3Vn. The initial period for both walls was assumed to be 2 seconds. The results of the 
analysis indicate that for wall W-L5-R3 effective stiffness reduction factor reduces from 0.99 at 
R = 1.0 to 0.54 at R = 5.0, while it drops from 0.95 to 0.49 for the same R values. This is 
equivalent to about 10% reduction for the highest R factor. This demonstrates that walls with 
lower energy dissipation generally tend to have higher displacement demand during earthquakes. 

Figure 6 shows a summary of the effective stiffness reduction factor for all initial periods. 
An α value corresponding to a given period and R factor represents the mean of the α values for 
the thirteen walls. This figure indicates that at R = 1.0, α is equal to 1.0 regardless of the initial 
period, and as R increases, α drops to as low as 0.5 for 0.5 second initial period.  
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Figure 6. Summary of stiffness reduction factors for different initial periods and ratios of   

elastic force demand to strength R. 
 

Summary and Conclusions 
 

The aim of this work is to determine appropriate effective stiffness values for cantilever 
concrete shear walls in a way that the maximum drift demands using Response Spectrum 
Analysis (RSA) are good estimates of the displacement demands from nonlinear time history 
analysis. For this purpose, a specially developed nonlinear hysteretic model for concrete shear 
walls was implemented into OpenSees. The nonlinear model, including all rules for stiffness 
degradation, unloading, and mid-cycle reloading, were calibrated to the results of a recently 
completed large-scale test of a slender concrete shear wall. The study included 13 different walls 
with a range of nonlinear properties reflecting the range for typical concrete shear walls designed 
in Canada. The initial fundamental periods of the walls ranged from 0.5 to 4 seconds. Forty 
modified ground motions were used in the analysis and the range of elastic demand to strength of 
flexural strength of the walls (R) ranged from 1.0 to 5.0. The results of the study indicates that 
the most important parameter is the ratio of elastic demand to strength of wall, and that generally 



the effective stiffness of concrete walls do not reduce below about 50% of the stiffness of an 
uncracked wall for R values up to 5.0. The axial compression stress ratio was found to have 
much less influence on the effective stiffness of concrete walls than previously thought. Opposite 
to what was expected, the wall with the highest axial compression stress ratio was found to 
actually have the lowest effective stiffness because that wall had proportionally less vertical 
reinforcement and thus less hysteretic damping. The conclusions from this study mean that 
significant changes are needed to the current Canadian concrete code provisions on effective 
stiffness of concrete shear walls given in Clause 21.2.5. 
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