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ABSTRACT 

  
This paper develops probabilistic models to predict the cost and time of repair of 

structures subjected to ground motion. The models will be implemented in a new framework for 
performance-based earthquake engineering. The two key ingredients of this framework are 
probabilistic models and reliability analysis. The probabilistic damage models developed in this 
paper predict the visual damage in components. This is useful because the visual damage 
determines the repair action. In turn, probabilistic models for the cost and time of the repair 
actions are developed. In the continuation of the work presented here, both structural and non-
structural components are considered.   

Introduction 

 
An important objective in the presented work is to account for the unavoidable 

uncertainties involved in the prediction of damage and loss due to earthquakes. The type of 
probabilistic models employed in this work account for both irreducible (aleatory) uncertainty in 
physical parameters and reducible (epistemic) model uncertainty. The uncertainty is 
characterized by random variables. Given a realization of the random variables, the probabilistic 
models produce one unique result. Hence, the output from the models is in terms of measurable 
quantities of damage, instead of the conditional probabilities that are needed in total probability 
approaches. In the approach adopted in this paper, reliability analysis is used instead to obtain 
loss probabilities.  
 

To relate structural response to damage, the traditional approach involves damage 
indices. A damage index is a non-dimensional variable between zero (no damage) and unity 
(complete failure). The value of a damage index is correlated with states of physical damage. 
Damage states divide the continuous progression of damage in a structure to a few broad 
categories such as “slight damage” or “complete damage”. Williams and Sexsmith (1995) give a 
review of seismic damage indices developed for concrete structures. More recently, the concept 
of fragility functions has become widespread. These functions provide the conditional 
probability of being in a damage state for a given ground shaking intensity or structural response. 
When a structural response is used as input to the fragility function, this response is usually 
selected as the most significant engineering demand parameter (EDP), such as drift ratio for 
structural components. Such probability functions are developed based on experimental data and 
expert opinion and by assuming a distribution type (usually lognormal) to the observed data. 
Fragilities are central in the ATC-58 approach provided in the recent seismic design guidelines 
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from the Applied Technology Council, as well as in the approach adopted by the Pacific 
Earthquake Engineering Research center (PEER) (Porter 2003). In these methodologies, the 
development of fragility functions is proposed to relate a structural response, such as drift ratio to 
the probability of being in a specific damage level such as cracking in a concrete component. 
Loss fragilities are also suggested to determine the probability of exceeding a certain loss 
threshold for a given level of damage. Pagni (2003) has developed fragility curves for various 
repair methods used in older RC components. Discrete damage states representing the 
progression of damage in older RC beam-column joints are identified based on which the 
necessary repair methods are selected. The fragility curves are obtained based on existing 
experimental data. For given values of EDPs, the fragility curves predict the probability of the 
required repair method. For each repair method, cost of repair is determined as a product of the 
type of damage, size of the component and the unit cost of repair including cost of labor, 
material, equipment, etc. Markups such as contractor’ profit and overhead are then applied on the 
total repair cost of the building. In the approach taken by Yang et al. (2009), the EDPs to 
generate damage state fragility curves are determined by a limited number of non-linear dynamic 
analyses and artificially generated random variables. Lookup tables are used to determine the 
cost associated for the repair of each damage state; however, in order to estimate a final loss 
value, a uniform random number generator is used to determine the damage state for a given 
level of demand.  

 
This paper proposes an alternative methodology to the fragility-curve approach. The 

development of probabilistic models allows for the contribution of several variables rather than 
only the most significant variable in determining damage. The unavoidable uncertainty involved 
in the prediction of damage and loss is explicitly taken into account. The outputs of such 
probabilistic models are deterministic estimates of damage and loss. Probabilistic models have 
the disadvantage of being complex algebraic or algorithmic functions, rather than visual curves. 
On the other hand, the implementation of such models is suitable for the reliability analyses that 
are carried out to obtain the final damage and loss probability curves. A detailed description of 
such reliability analysis is provided elsewhere (Haukaas et al. 2009). It should be noted that 
these curves determine the probability of exceeding a certain damage and loss threshold and not 
a conditional probability.  

 
An implementation of the proposed methodology is discussed at the end of this paper. 

Preliminary probabilistic damage models are developed for the total length of epoxy-injectable 
cracks and area of cover spalling in rectangular RC columns. The proposed damage models 
quantify the extent of damage as seismic demand increases. A test program is planned as part of 
this ongoing project to collect extensive observations on damage to RC columns. These models 
will be revised as new observations become available. The general form of a loss model is also 
proposed which estimates the associated repair cost based on the selection of a repair action and 
associated costs, and the effect of earthquake intensity.  

 
Proposed Methodology 

  

Probabilistic Models 

 
The general form of a probabilistic model is shown in Eq. 1 (Gardoni et al. 2002): 



 
 D(x, Θ) = d(x) + γ(x,θ) + σε               (1) 
 
in which d(x) is an existing deterministic model, x = (x1, x2, x3, ...) is a set of independent 
measurable variables, such as engineering parameters for a probabilistic damage model, Θ = (θ, 
σ), θ = (θ1, θ2, θ3, ...) is the set of unknown model parameters introduced to fit the model to the 
observations. γ(x, θ) includes additional terms that correct for the bias in d(x) and is defined in 
terms of independent variables, x, formulated in the explanatory functions, hi(x): 
 
 γ(x,θ) = ∑ θihi(x)               (2) 
 
Although γ(x, θ) is linear in the unknown model parameters, the explanatory functions can be in 
any nonlinear form. σ is the standard deviation of the model error and ε is a random variable with 
zero mean and unit variance. The σε term takes into account the influence of additional missing 
variables and the remaining error due to inexact model form. As proposed by Gardoni et al., Θ 

values are determined by the application of Bayesian updating rule. The details of this 
application are found elsewhere (Gardoni et al. 2002). To achieve a compromise between model 
accuracy and model simplicity, an iterative procedure is followed by which the least informative 
explanatory functions are eliminated. Such functions are recognized by having the largest 
coefficient of variation (Gardoni et al. 2002). In cases where no deterministic model is available, 
one can still use a probabilistic model form as shown in Eq. 3 (Haukaas et al. 2009), in which θi 
parameters in γ(x,θ) fit the explanatory functions to the observed data.  
 
 D(x, Θ) = γ(x,θ) + σε                           (3) 
 
Damage Models  

 
 Probabilistic models can be developed to predict various measures of loss such as direct 
and indirect economic losses, casualties, and downtime. The focus of this paper, however, is on 
the development of probabilistic loss models for repair cost and repair time. It is recognized that 
repair action is the link from damage to repair cost and time. Hence, the proposed probabilistic 
damage models predict the visual damage in components based on which the required repair 
action is selected. Visual damage tracks the progression of damage in a component. Examples of 
visual damage in a RC column are cracking, cover spalling, core crushing, longitudinal 
reinforcement buckling, and longitudinal and transverse reinforcement fracture. To select the 
appropriate repair action, several guidelines and manuals provide details of methods of repair for 
seismic damaged structures. For example, FEMA 306-308 provide guidelines for structural 
repair of seismic damage to RC and masonry walls. Following Eq. 1, the general form of a 
probabilistic damage model is shown in Eq. 4. EDPs from structural analysis are inputs to 
damage models and the results are deterministic quantities of visual damage. 
 
 Visual Damage = d(x) + θ1h1(x) + θ2h2(x) + θ3h3(x) +…+ σε              (4) 
 
d(x) is an existing deterministic model for the desired damage quantity and the remaining terms 
are added to account for uncertainties involved in d(x). The variables in the explanatory 
functions hi(x) are formulated in terms of mechanics and selected based on engineering 



parameters and responses. Examples of hi(x) for a probabilistic damage model of a RC 
component are P/f’cAg and ρl in which P, f’c, Ag and ρl are considered as independent variables, xi 
(P is the applied axial load, f’c is the concrete compressive strength, Ag is the gross cross 
sectional area and ρl is the longitudinal reinforcement ratio). As mentioned earlier, the 
development of probabilistic models is based on the availability of observations. Records of 
damage at various levels of demand are valuable sources of observations to be used in the 
development of probabilistic damage models.   
 
Loss Models 

 
 Based on the repair actions selected for each component, the total repair cost to a 
structure includes the summation of costs related to labor, materials, equipment as well as 
contractors’ added profit, economy of scale, etc. However, much uncertainty is involved in the 
estimation of repair cost after occurrence of an earthquake due to the uncertainties involved in 
the contractor unit cost, overhead and profit, demand surge (amplification in cost of labor, 
material, etc. as a result of sudden increase in demand), the choice of union versus nonunion 
labor, etc (Porter et al. 2002). Following Eq. 3, the general form of a probabilistic repair cost, 
Crepair, reads: 
 
 Crepair = θ1h1(x) + θ2h2(x) + θ3h3(x) +…+ σε                         (5) 
 
in which Crepair is the total repair cost to the structure after occurrence of an earthquake. 
Similarly, the repair time, Trepair, associated with the selected repair action can be determined by: 
 
 Trepair = θ1h1(x) + θ2h2(x) + θ3h3(x) +…+ σε                         (6) 
 
in which the explanatory functions include the contribution of factors such as the time associated 
with the selected repair action, mobilization, etc.  
 

Implementation of the Proposed Methodology 

 

Damage Models 

  
 The proposed methodology is implemented to develop probabilistic damage models for 
rectangular RC columns. As mentioned before, the progression of visual damage in a RC 
component includes cover cracking, cover spalling and core crushing, longitudinal reinforcement 
buckling and, longitudinal and transverse reinforcement fracture. Much research has focused on 
seismic behavior of RC columns at failure. Elwood and Moehle (2005) have developed a drift 
capacity model at shear failure for RC columns with light transverse reinforcement. Berry and 
Eberhard (2005) have proposed models for drift at onset of bar buckling in flexural dominated 
RC columns. However, less research has been conducted on quantifying early levels of damage 
including cracking and spalling associated with small and moderate earthquakes. Hence, this 
work focuses on the development of probabilistic damage models to measure cracking and cover 
spalling which initiate in RC columns prior reaching post-peak behavior.  
 



Probabilistic Models of Crack Length   

 
 In the literature, numerous cyclic tests have been conducted on various types of RC 
columns. For all specimens, hairline cracks were initiated on the concrete surface at low levels of 
demand. As the displacement level increased, new cracks formed and old cracks increased in 
width and length. These residual cracks developed prior post-peak response can be repaired by 
the application of epoxy injection (FEMA 306-308). As mentioned earlier, the perceived loss 
estimates are in terms of cost and time of repair. Cost of epoxy injection is based on crack length. 
Hence, probabilistic damage models are developed to predict the total length of epoxy-injectable 
cracks developed in columns prior post-peak behavior. The widths of such residual cracks range 
between 1mm to 2mm (Hose et al. 2000). It is recognized that the underlying mechanics for the 
development of cracks on perpendicular and parallel faces of a column (with respect to the 
direction of loading) are different. At higher levels of demand, mainly flexural cracks appear on 
the perpendicular faces and the cracks on parallel faces turn into shear cracks. Deterministic 
models of shear and flexural crack length are developed by Igarashi et al. (2009) for rectangular 
RC columns, as shown in Eq. 7 and 8. These models are based on an experimental program 
including flexural and shear dominated columns. The specimens were identical except in the 
transverse reinforcement ratio, ρs.  
 
 Total length of flexural cracks = 8Nf (B/2 + βD)                       (7) 
 
 Total length of shear cracks = 8Ns (√2γD)                        (8) 
 
 Ns = Nf -1                                          (9) 
 
In above equations, B and D are the perpendicular and parallel sides of column cross section. Nf 
and Ns represent the total number of flexural and shear cracks (lumped in plastic hinge zone), 
respectively. γ is a coefficient related to the length of shear cracks in parallel faces of column. β 
is a constant factor equal to 0.24 accounting for the extension of flexural cracks from 
perpendicular faces to parallel faces. Nf and γ are determined by Fig. 1. At low levels of demand, 
however, shear and flexural cracks on each column face are not distinguishable. Furthermore, for 
the purpose of determining cost of repair, it is not significant if the crack is shear or flexure 
related. Hence, the above models are modified to determine the total crack length on parallel and 
perpendicular faces. Namely, βD factor is subtracted from Eq. 7 and added to Eq. 8, as shown in 
Eq. 10 and 11: 
 
 Total length of cracks on perpendicular face= 4Nf B                     (10) 
 
 Total length of cracks on parallel face = 8Ns (√2γD + βD)         (11) 
 
Following Eq. 1, the preliminary probabilistic models for length of cracks in perpendicular and 
parallel faces are shown in Eq. 12 and 13, respectively. These probabilistic models originally 
include explanatory functions h1(x) = 1 to account for the bias in the model independent of 
variables x, h2(x) = δc to explicitly account for the effect of drift angle and h3(x) = ρs

α. It should 
be noted that although other variables such as longitudinal reinforcement ratio, axial load, etc. 
are likely significant in the length of cracks developed in a column, such variables are not 



included in the models due to the limited data set considered. Logarithmic transformation is used 
to follow the assumption of homoskedasticity (independent model variance with respect to 
variables, x). Total crack length is normalized by the plastic hinge zone length (assumed to be 
equal to the longer cross section dimension, D) in order to develop a dimensionless model. As 
described above in “Probabilistic Models”, a stepwise elimination process is followed in the 
Bayesian updating rule to eliminate the least informative explanatory functions. In these models, 
it is found that h1(x) is a non-informative function due to its coefficient having a large posterior 
coefficient of variation and as such is eliminated from the models. The posterior statistics of the 
model parameters are shown in Tables 1 and 2. Figs. 2-3 compare the results obtained by the 
median of the probabilistic models with the test observations by Igarashi et al. (2009). These 
probabilistic models will be further revised once additional data are available. 
 
 ln (Lperp /D) = ln (4Nf B./D) + θ2δ +θ3ρs

4 + σε                             (12) 
   
 ln (Lpara /D) = ln (8Ns [√2γD + βD]/D) + θ2δ

-1 +θ3ρs
3 + σε                   (13) 

 
Probabilistic Model of Spall Area 
 

 Following the yielding of longitudinal reinforcement at subsequent levels of 
displacement, spalling initiates and increases in height as displacement demand increases 
(Lehman et al. 2004). Referring to FEMA 308, the repair method of concrete patching is used for 
repair of spalled cover concrete. The repair cost of concrete patching is based on the area of 
cover spalled. Based on the recorded observations by Igarashi et al. (2009), a probabilistic model 
for spalled area is developed as shown in Eq. 14. Due to the lack of an existing deterministic 
model measuring area of spalling in RC columns, Eq. 14 only includes explanatory functions and 
unknown model parameters (following Eq. 3). Spall area is normalized by the product of column 
perimeter and assumed plastic hinge zone length, D: 
 
 Asp /[2(D+B)D] = θ1+ θ2 δ

2 + θ3 ρs + σε                     (14) 
 
Again following the Bayesian updating rule deletion process, h1(x) and h3(x) are eliminated due 
to having large posterior coefficients of variation. The reduced probabilistic model is shown in 
Eq.15: 
  
 Asp /[2(D+B)D] = θ2 δ

2+ σε                                      (15) 
 
Table 3 includes the posterior statistics of the model parameters. Fig. 4 compares the test 
observations by Igarashi et al. (2009) to the results obtained by the median values of Eq. 15. 
Similar to the crack length models, Eq. 15 is a preliminary model and will be further revised as 
new data are available.  
 
Loss Models 

 
 Preliminary models of repair cost for repair actions of epoxy injection and concrete 
patching are under development. The general form of such models is shown in Eq. 16 in which 
DF is the damage factor (the ratio of the repair cost, Crepair, to the total replacement cost of the 



component). Referring to Eq. 5, the estimation of repair cost after occurrance of an earthquake 
depends on various factors such as the contractor unit cost, overhead and profit, demand surge, 
the choice of union versus nonunion labor, etc (Porter et al. 2002). As potentially important as 
these are, this paper currently focuses only on the effect of unit cost, contractor overhead and 
profit in addition to the variability in the demand for labor, material, construction equipment, etc. 
after occurrance of an earthquake. To account for the latter, a measure of earthquake intensity is 
included in the model. Clearly higher intensity levels result in higher demand for repair and 
lower availability of labor and material. m is the severity index related to Modified Mercalli 
Intensity (MMI) scale. Due to being an ordinal scale, arithmetic operations cannot be performed 
directly on MMI scale (Blong 2001). Instead, the severity indices correlated to MMI scale 
developed by Pacella (1982) are used.  
 
 (DF)after = θ1 + θ2(DF)before + θ3m + σε                              (16) 
 
The unknown model parameters, θi, in the above model will be determined based on previous 
records on repair cost before and after occurrence of an earthquake. In this tentative model form, 
θ1 is added in order to account for the effect of other contributing factors, which are not 
explicitly accounted for.  
 

Conclusions 

 
 In this paper, the development of probabilistic models is proposed as a new methodology 
to predict seismic performance of structures. For given realizations of engineering parameters 
and responses, probabilistic models predict the visual damage in components. The results of 
probabilistic damage models are linked by physical quantities rather than conditional 
probabilities to probabilistic loss models. Based on the associated repair action, cost and time of 
repair can be determined by the probabilistic loss models. The proposed probabilistic damage 
models predict the extent of cracking and cover spalling in rectangular RC columns. It should be 
stressed that the proposed models are preliminary and will be revised as new observations on 
damage become available. Loss models are under development to estimate the repair cost of 
epoxy injection and concrete patching based on the extent of the observed damage. Such loss 
models account for the uncertainties in the contributing factors, which affect cost estimation after 
an earthquake. 
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Table 1.     Posterior statistics of the coefficients of the preliminary probabilistic model of crack 
length on perpendicular face. 

 

Coefficients Mean Coefficient 

of 

Variation 

Correlation Coefficient 

θ2 θ3 

θ2 -0.083 0.241 1.00 -0.640 

θ3 7.00 0.318 -0.640 1.00 

σ 0.116 0.204 - - 
 
Table 2.     Posterior statistics of the coefficients of the preliminary probabilistic model of crack 

length on parallel face. 
 

Coefficients Mean Coefficient 

of 

Variation 

Correlation Coefficient 

θ2 θ3 

θ2 0.160 0.133 1.00 -0.462 

θ3 5.49 0.183 -0.462 1.00 

σ 0.152 0.204 - - 
 
Table 3.     Posterior statistics of the coefficients of the preliminary probabilistic model of spall 

area. 
 

Coefficients Mean Coefficient 

of 

Variation 

θ2 0.024 0.049 

σ 0.024 0.204 
 

 
 
Figure 1.    Number of flexural cracks and γ coefficient as a function of maximum rotation angle 

(adapted from Igarashi et al. 2009). 



 
 
Figure 2. Comparison of test observations with the median results of the crack length 

probabilistic model for perpendicular face. 
 

 
 

Figure 3. Comparison of test observations with the median results of the crack length 
probabilistic model for parallel face. 

 

 
Figure  4.    Comparison of test observations with the median results of the probabilistic model of 

spall area. 
 


