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ABSTRACT 
 
 This paper presents a study on the rocking isolation of block-like objects under 

dynamic base excitation. The structural model employed consists of a rigid block 
supported on a practically-rigid pedestal, beneath which the isolation system is 
accommodated. The rocking response of the seismically isolated rigid block 
subjected to base excitation is studied. Assuming no sliding of the block relative to 
the supporting base, when subjected to ground excitation the system may exhibit two 
possible patterns of motion, namely pure translation, in which the system in its 
entirety oscillates horizontally, and rocking, in which the rigid block pivots on its 
edges with respect to the horizontally-moving base. The dynamic response of the 
system is strongly affected by the occurrence of impact between the block and the 
horizontally-moving base, as impact can modify not only the energy but also the 
degrees of freedom of the system by virtue of the discontinuity introduced in the 
response. The formulation of the problem involves derivation of the nonlinear 
equations of motion, transition criteria from one regime of motion to another and an 
appropriate impact model. Numerical results are obtained via an ad-hoc 
computational scheme developed to determine the response of the system under 
horizontal ground excitation.   

Introduction 
 
 Thus far particular attention has been given to the application of seismic isolation in 
earthquake engineering to safeguard the primary structural system in bridges, buildings and the 
infrastructure. On the contrary, limited attention has been given to the application of base-isolation 
technology to individual elements, such as building contents, mechanical and electrical equipment, 
computer servers, statues and other objects of great value and importance. To this end, this study 
serves to expand the knowledge on the dynamic behavior of base-isolated rigid bodies by 
exploiting the potential of seismic-isolation strategy to mitigate their seismic risk.  
 
 In the literature, there is a wealth of research papers on the seismic behavior of block-like 
structures. Housner's landmark study (Housner 1963) has provided the basic understanding on the 
rocking response of a slender rigid block and sparked modern scientific interest. His model is based 
on the assumption of perfectly-inelastic impact and sufficient friction to prevent sliding during 
impact. Following Housner’s fundamental work, numerous studies (e.g. Yim et al. 1980, Ishiyama 
1982, Spanos and Koh 1984, Shenton and Jones 1991, Makris and Roussos 2000) have been 
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reported in the literature dealing with various aspects of the complex dynamics of the single rigid 
block. Studies have also been conducted on the non-linear dynamic response of systems consisting 
of two blocks, one placed on top of the other, free to rock without sliding (e.g. Spanos et al. 2001). 
 
 This paper presents a study on the rocking response of base-isolated block-like objects 
under dynamic base excitation. The structural model employed consists of a rigid block 
supported on a practically-rigid pedestal, beneath which the isolation system is accommodated. 
Assuming no sliding of the block relative to the supporting base, when subjected to ground 
excitation the system may exhibit two possible patterns of motion, namely pure translation, in 
which the system in its entirety oscillates horizontally, and rocking, in which the rigid block 
pivots on its edges with respect to the horizontally-moving base. The dynamic response of the 
system is strongly affected by the occurrence of impact between the block and the horizontally-
moving base, as impact can modify not only the energy but also the degrees of freedom of the 
system by virtue of the discontinuity introduced in the response. The formulation of the problem 
involves derivation of the nonlinear equations of motion, transition criteria from one regime of 
motion to another and an appropriate impact model. Numerical results are obtained via an ad hoc 
computational scheme developed to determine the response of the system under horizontal 
ground excitation.  
 

Analytical Model 
 
Model Considered  
 
 The system considered consists of a symmetric rigid block of mass m  and centroid mass 
moment of inertia I , supported on a horizontal rigid foundation (Fig. 1). The rigid block of 
height 2H h=  and width 2B b=  is assumed to rotate about the base corners O  and 'O . The 
distance between one corner of its base and the mass center is denoted by r  and the angle 
measured between r  and the vertical when the body is at rest is denoted by a , where 

( )1tan /a b h−= . 
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Figure 1.    Model at rest and oscillation patterns 

 

The horizontal and vertical displacements of the mass center of the block relative to an 
inertial frame of reference are denoted by ( )X t  and ( )Z t  respectively, while the corresponding 



displacements relative to the base are denoted by ( )x t  and ( )z t . The angular rotation of the 
block is denoted by ( )tθ , positive in the clockwise direction, and the horizontal displacement of 
the base relative to the foundation is denoted by ( )u t . 
  
Equations of Motion 
 
 Assuming no sliding of the block relative to the supporting base, when subjected to 
ground excitation the system may exhibit two possible patterns of motion: (a) pure translation, in 
which the system in its entirety oscillates horizontally with displacement ( )u t  (1 degree-of-
freedom response), and (b) rocking, in which the rigid block pivots on its edges with rotation 

( )tθ  as the supporting base translates horizontally with ( )u t  (2 degree-of-freedom response). 
The governing equations for each pattern of motion are herein formulated by means of the 
Lagrange method. 
 
Pure-translation regime  
 
 The equation of motion of the system in the pure-translation regime is 
 
 ( ) ( )b b gm m u cu ku m m x+ + + = − +&& & &&   (1) 
 
which is the classical linear second-order differential equation governing the response of a 
single-degree-of-freedom system to ground excitation. 
 
 Rocking regime  
 
 In the rocking regime the system possesses two degrees of freedom. Using as generalized 
coordinates the horizontal translation of the base relative to the ground, u , and the rotation angle 
of the object about a bottom corner, θ , Lagrange’s equations take the form 
 

   and  u
d T T V d T T VQ Q
dt u u u dt θθ θ θ

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + = − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠&&
 (2) 

 
in which T  denotes the kinetic energy of the system, V  the potential energy of the system, and 

uQ , θQ  the generalized nonconservative forces. 
 
 The kinetic energy of the system is obtained as 
 

( ) ( ) ( )2 22 21 1 1cos sin cos sin
2 2 2b g gT m u x m u x h b b h Iθ θ θ θ θ θ θ θ θ⎡ ⎤= + + + + + + − +⎢ ⎥⎣ ⎦

& & & & && & & &  (3) 

 
in which the first term is associated with pure translation of the base, and the second and third 
term are associated with general planar motion of the block. 
  
 The potential energy of the system is obtained as 



 ( )21 s in 1 cos
2

V ku mg b hθ θ= + − −⎡ ⎤⎣ ⎦   (4) 

 
in which the first term is associated with the potential energy due to elastic deformation of the 
spring and the second term is associated with the potential energy due to gravity. 
 
 The generalized forces are derived via the virtual work of the nonconservative forces as 
 
 , 0uQ cu Qθ= − =  &   (5) 
 
 Substituting Eqs. (3) through (5) into Eq. (2) yields the governing equations of motion for 
rotation about O  ( 0θ > ). The governing equations of motion for rotation about O′  ( 0θ < ) can 
be derived in a similar manner. Combining the equations for rotation about O  and O′ , leads to a 
compact set of equations governing the rocking regime of the object on top of the moving base: 
 
( ) ( ) ( ) ( )2cos sgn sin sgn cos sinb b gm m u cu ku m h b m b h m m xθ θ θ θ θ θ θ θ+ + + + + + − = − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

&& &&& & &&  (6) 
 
( ) ( ) ( ) ( )2 cos sgn sin sgn cos sin cos sgn sin gmr I mu h b mg b h m h b xθ θ θ θ θ θ θ θ θ θ+ + + + − =− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&& && &&  (7) 

where sgnθ  denotes the signum function in θ . Note that Eqs. (6) and (7) hold only in the 
absence of impact ( 0θ ≠ ). At that instant, both corner points O  and O′  are in contact with the 
base, rendering the above formulation invalid. The impact problem is addressed separately in the 
following section. 
 

Impact Model 
 
 The dynamic response of the system is strongly affected by the occurrence of impact(s) 
between the block and the horizontally-moving base. In fact, impact affects the system response 
on many different levels. On one level, it renders the problem nonlinear (aside from the 
nonlinear nature of the equations themselves) by virtue of the discontinuity introduced in the 
response (i.e. the governing equations of motion are not valid for 0θ = ). That is, impact causes 
the system to switch from one oscillation pattern to another (potentially modifying the degrees of 
freedom), each one governed by a different set of differential equations. Further, the integration 
of equations of motion governing the post-impact pattern must account for the ensuing 
instantaneous change of the system’s velocity regime. On another level, the effect of impact on 
the dynamic response is also evident in the energy loss of the system manifested through the 
reduction of post-impact velocities. 
 
 Therefore, the critical role of impact in the dynamics of the system necessitates a 
rigorous formulation of the impact problem. In this paper a model governing impact is derived 
from first principles using classical impact theory. According to the principle of impulse and 
momentum, the duration of impact is assumed short and the impulsive forces are assumed large 
relative to other forces in the system. Changes in position and orientation are neglected, and 
changes in velocity are considered instantaneous. Moreover, this model assumes a point-impact, 



zero coefficient of restitution (perfectly inelastic impact), impulses acting only at the impacting 
corner (impulses at the rotating corner are small compared to those at the impacting corner and 
are neglected), and sufficient friction to prevent sliding of the block during impact. 
 
 Under the assumption of perfectly inelastic impact, there are only two possible response 
mechanisms following impact: (a) rocking about the impacting corner when the block re-uplifts 
(no bouncing), or (b) pure translation when the block’s rocking motion ceases after impact. The 
formulation of impact is divided into three phases: pre-impact, impact, and post-impact as 
illustrated schematically in Fig. 2. In the following, a superscript “-” refers to a pre-impact 
quantity and a superscript “+” to a post-impact quantity.  
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Figure 2.    Impact from rocking about O  followed by (a) re-uplift about O′  and (b) termination 
of rocking 

 
Rocking continues after impact 
 
 Consider the system at the instant when the block hits the moving base from rocking 
about O  and re-uplifts pivoting about the impacting corner, O′  (Figure a). As mentioned before, 
impact is accompanied by an instantaneous change in velocities, with the system displacements 
being unchanged. Therefore, the impact analysis is reduced to the computation of the initial 
conditions for the post-impact motion, u+& and θ +& , given the position and the pre-impact 
velocities, u−&  and θ −& . 
 
 With regard to the block, the principle of linear impulse and momentum in the x  and z  
direction states that 
 
 xF dt mX mX mu mx mu mx+ − + + − −= − = + − −∫ & & & & & &  (8) 
  
 zF dt mZ mZ mz mz+ − + −= − = −∫ & & & &   (9) 
 
in which xF dt∫  and zF dt∫  are the horizontal and vertical impulses (assumed to act at O′ ); 



gX u x x− − −= + +& & & & , gX u x x+ + += + +& & & &  and Z z− −=& & , Z z+ +=& &  are the absolute pre- and post-
impact horizontal and vertical velocities of the mass center of the block, respectively. 
 
 In addition, the principle of angular impulse and momentum states that  
 
 ( ) ( )z xb F dt h F dt I Iθ θ+ −− = −∫ ∫ & &   (10) 
 
in which for rectangular block the centroid mass moment of inertia ( )2 2 / 3I m b h= + . 
 
 In Eqs. (8) and (9), the pre- and post-impact horizontal and vertical components of the 
relative translational velocity of the mass center can be expressed in terms of the angular 
velocity of the block as 
 
 , , ,x h z b x h z bθ θ θ θ− − − − + + + += = = = −      & & & && && &  (11) 
 
Substituting Eqs. (11) into Eqs. (8) and (9) yields  
 
 xF dt mu mh mu mhθ θ+ + − −= + − −∫ & && &   (12) 
 
 zF dt mb mbθ θ+ −= − −∫ & &   (13) 
 
 One additional equation is therefore required to uniquely determine the post-impact 
velocities θ +&  and u+& . By considering the system in its entirety during the impact, it can be stated 
that the horizontal impulse on the system is zero, resulting in the conservation of the system’s 
linear momentum in the horizontal direction. That is, 
 
 ( ) ( )b bm m u m m u mh mhθ θ+ − + −+ = + − +& && &   (14) 
 
Combining Eqs. (10), (12), (13) and (14) gives the post-impact velocities as 
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in which h bλ =  is the geometric aspect ratio and bm m m=  is the mass ratio. 

 
 Eqs. (15) and (16) give the post-impact velocities for impact from rocking about O  
(realized when 0θ <& ). Identical expressions are derived for the case of impact from rocking 



about 'O  (realized when 0θ >& ). 
 
 It is worth noting that the coefficient of restitution e  as defined in classical impact 
theory, relates pre- to post-impact translational velocities normal to the impact surface, and 
hence it must not be confused with the coefficient of “angular restitution” 1β  defined in Eq. (15), 
which relates the pre- to post-impact angular velocities of the body. In the derivation presented 
herein, the coefficient of restitution e  enters in the expression ´ ´O Oz ez+ −= −& &  which relates pre- to 
post-impact vertical relative velocities of the impacting corner ( 'O ). The assumption of perfectly 
inelastic impact is then justified by considering 0e = .  
 

From Eq. (15), it can be seen that the coefficient of angular restitution, 1β , depends both 
on the geometric aspect ratio λ  and the mass ratio m . The variation of coefficient 1β  with the 
slenderness ratio λ  is shown in Fig. 3a for different values of the mass ratio m . The dependency 
of coefficient 1β  on the mass ratio m  is seen to be weak, and practically diminishes for very 
slender blocks (e.g. for 6λ > ). The value 1 1β = , implying preservation of the magnitude of the 
angular velocity after impact, presents an upper bound for the coefficient of angular restitution. 
Evidently, the more slender a block, the larger the associated coefficient 1β  is. For the 
assumption of no-bouncing to be satisfied, the coefficient of angular restitution 1β  should have a 
positive value. In such a case, the angular velocity of the block will maintain sign upon impact, 
implying switching pole of rotation from one corner to the other. This requires that 

2( 1) ( 4)m mλ > + + .  
 

Slenderness ratio λ
0 1 2 3 4 5 6 7 8 9 10

C
oe

ff
ic

ie
nt

 β
1

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

m/mb = 0.5 
m/mb = 1.0 
m/mb = 1.5 
m/mb = 2.0 

Bouncing

Rocking

      Slenderness ratio λ
0 1 2 3 4 5 6 7 8 9 10

C
oe

ff
ic

ie
nt

 β
2/h

0.0

0.2

0.4

0.6

0.8

1.0

m/mb = 0.5
m/mb = 1.0 
m/mb = 1.5 
m/mb = 2.0 

 
     (a)                                                         (b) 

Figure 3.    Variation of coefficients 1β  and 2β with slenderness ratio 
  

The coefficient associated with the reduction of the linear velocity of base, 2β , depends 
not only on the parameters λ  and m , but also on the absolute size of the block (in terms of its 
height). The normalized coefficient 2 2 hβ β≡  is plotted against the slenderness ratio λ  for 
different values of the mass ratio m  in Fig. 3b. Observe that the value of the coefficient 2β  
decays rapidly with the slenderness ratio λ . Moreover, the influence of the mass ratio m  on the 
coefficient 2β  is much greater than that on the coefficient 1β . 



Rocking ceases after impact 
 
 When rocking of the block on top of the moving base ceases, the system will attain a 
pure-translation regime (Fig. 2b). In this case, the impact analysis is reduced to the computation 
of the post-impact translational velocity of the system, u+& , given the position and the pre-impact 
velocities, u−&  and θ −& . 
 
 By considering the system as a whole during impact, it can be stated that the horizontal 
impulse on the system is zero, resulting in the conservation of the system’s linear momentum in 
the horizontal direction. That is, 
 
 ( ) ( ) ( ) ( )b g g b g gm u x m u x h m u x m u xθ− − − + ++ + + + = + + +&& & & & & & & &  (17) 
 
which upon rearranging terms becomes 
 

 
( ) 31

mhu u u
m

θ β θ+ − − − −= + ≡ +
+

& && & &   (18) 

 
Numerical Solution 

 
 Numerical results were obtained through an ad-hoc computational scheme developed to 
determine the response of the system under horizontal ground excitation. The numerical 
integration of the equations of motion was pursued in MATLAB through a state-space 
formulation (MATLAB 2006). In each time step, close attention is paid to the eventuality of 
transition from one pattern of motion to another and to the accurate evaluation of the initial 
conditions for the next pattern of oscillation, on the basis of the developed impact model. To 
illustrate the practical application of the developed computational scheme, the response of the 
system under earthquake excitation has been calculated for various system parameters.  
 

The program was executed to calculate the response of a base-isolated rigid block 
subjected to the N-S component of 1940 El Centro earthquake and the N-S component of 1995 
Kobe, Japan earthquake. Results are presented here for certain specific values of various system 
parameters, including the mass ratio / bm m m= , slenderness ratio /h bλ = , and size of the 
rocking block in terms of its half-diameter r. The linear isolation system considered has period 

1.5 secT =  and viscous damping ratio 0.20ξ = . The response under the same ground 
excitations was also calculated for the case of the non-isolated block for comparison purposes.  

 
Figs. 4 and 5 present the response of isolated and non-isolated rigid blocks under the 

selected excitations, in terms of the rotation and angular-velocity time histories of the rigid 
block. In addition, these figures present the horizontal-displacement history of the base of the 
isolated block. Comparison between the isolated and non-isolated cases reveals the benefits of 
the isolation method. It is indicative that rocking of the block in Fig. 4 is prevented entirely with 
the application of seismic isolation. Even when the non-isolated block exhibits excessive rotation 
amplitudes, occasionally leading to overturning of the block (e.g. for λ=5.0, =1, r=1 m), the 



isolated block remains in full contact with the base, thus yielding linear sdof system response. 
 
Under certain conditions, rocking of the isolated block may be initiated and sustained for 

a period of time, as shown in Fig. 5. Comparison of the rocking response of the isolated and non-
isolated block shows the beneficial effect of seismic isolation in reducing the rotation amplitude, 
the number of impacts and the overall duration of oscillation. However, the same conclusion 
cannot be derived for the angular velocity of the block, as its magnitude is found to be 
comparable for the two cases, with and without isolation. In terms of the rotation amplitude and 
the number of impacts, compared to the non-isolated block, which is on the verge of overturning 
( )max

/ 0.95aθ = , the isolated block exhibits a maximum rotation amplitude 
max

/ 0.64aθ =  
and as many as 5 times less impacts. 
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Figure 4.    Response of the system to the N-S component of 1940 El Centro earthquake (system 

parameters: λ=4.0, =1, r=1 m). 
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Figure 5.    Response of the system to the N-S component of 1995 Kobe, Japan earthquake 

(system parameters: λ=2.86, =1, r=1 m). 



Fig. 6 reports results of an extensive numerical investigation of a class of rigid blocks 
with different geometric characteristics in terms of the slenderness ratio λ and size of the block r, 
for both the non-isolated and isolated case. A total of twelve-hundred nonlinear dynamic 
analyses were performed in constructing the two behavior maps. Each dot in these maps 
represents the outcome of a single analysis. The blue circles indicate “No Rocking”, the green 
“Rocking”, and the red circles “Overturning” of the block. The comparison between the two 
maps reveals the benefits of the isolation method. Evidently, for the case of the isolated block, 
the initiation of rocking (boundary between the blue and green areas) is shifted towards higher 
values of slenderness ratio λ and the instability region (indicated in red) is substantially reduced.  
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Figure 6.    Behavior maps for a class of rigid blocks under the N-S component of 1940 El 

Centro earthquake ( =1, Ts = 1.5 s, ξ = 20%) 
 

Also, an interesting observation is that, contrary to what intuition would suggest, there 
seems to be a scale effect. In other words, between two blocks of the same proportion (same λ) 
but of different size (different r), the larger one is more stable than the smaller. This trend is 
more evident in the case of the isolated block. 

 
Concluding Remarks 

 
The rocking response of base-isolated block-like objects under horizontal ground 

excitation was examined within the context of rigid-body dynamics. The analytical formulation 
of this highly-nonlinear problem is quite challenging. Its complexity stems primarily from the 
fact that the dynamics of the system is drastically changed by the occurrence of impact, aside 
from the nonlinear nature of the governing equations themselves.  

 
 The model considered consists of a rigid block supported on a rigid base, beneath which 
the isolation system is placed. Under the assumption of sufficient friction to prevent sliding of 
the block relative to the supporting base, when subjected to base excitation the system may 
exhibit two possible patterns of motion, each being governed by highly nonlinear differential 
equation(s). The system can be set in pure translation, in which the system as a whole oscillates 
horizontally (1-DOF response), or rocking, in which the rigid block pivots on its edges with 
respect to the horizontally-moving base (2-DOF response). In addressing the critical role of 



impact in the dynamics of the system, a rigorous formulation of the impact problem using 
classical impact theory was presented in this paper. Numerical results were obtained via an ad-
hoc computational scheme developed to determine the response of the system under horizontal 
excitation. Results were obtained in order to verify the applicability of the isolation system and 
to evaluate the influence of its characteristic parameters. The results show that base isolation 
may effectively be applied to mitigate the rocking response of block-like objects during 
earthquakes. 
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