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ABSTRACT 
 
  In zones of high seismicity, properly detailed reinforced concrete columns 

contain adequate transverse reinforcement to resist the large shear demand 
associated with the development of the column’s full flexural strength.  
Unfortunately, this capacity design methodology was not fully adopted into 
building codes until the early 1970’s; thus rendering older reinforced concrete 
building columns vulnerable to premature shear failure (shear-critical) and 
associated loss of lateral load capacity.  The fact that shear-critical columns have 
the potential to sustain a shear failure prior to axial failure is well established and 
implemented in evaluation standards such as FEMA 356 and ASCE 41.  
However, if the concrete core is not adequately confined, shear and axial failure 
are likely to occur simultaneously.  This paper discusses computer simulations of 
three shear-critical reinforced concrete columns subjected to lateral load reversals 
of increasing magnitude with the intent to investigate the principal mode of failure 
as well as any secondary modes of failure. Results from three-dimensional 
nonlinear finite element models developed using the computer program ABAQUS 
are compared with data from three similar column assemblies tested to study the 
collapse risk of older reinforced concrete structures. Two of the column 
assemblies exhibited simultaneous shear and axial failure. Simulating the 
response of this type of column is a very challenging computational task due to 
the brittle behavior of the concrete, which results from the small amount of 
transverse reinforcement. A reasonable match was found between experimental 
and analytical response up to the point of axial failure, with the finite element 
model providing an accurate representation of the changes in stiffness observed 
during the test.   

  Introduction 
 
 A significant percentage of the reinforced concrete building inventory in large US 
population centers located in areas of high seismicity was built prior to 1970, in accordance with 
detailing requirements of existing building codes at the time. Significant changes to detailing 
practice were introduced into seismic codes in response to damage observed during the 1971 San 
Fernando Earthquake. As a result, a large number of older reinforced concrete buildings are 
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considered to have deficient detailing by modern standards.  In order to evaluate the vulnerability 
of these buildings and to develop efficient mitigation strategies there is a need to improve the 
ability to simulate the nonlinear behavior of heavily damaged reinforced concrete members and 
estimate critical response parameters such as peak lateral and axial load capacity as well as 
member ductility. 
 

This study focuses on using finite element analysis to simulate the behavior of three 
shear-critical columns tested to complete loss in axial load carrying capacity. This methodology 
was chosen because it takes into account the interaction between shear, flexure and axial load, 
and because developing a reliable model provides a valuable tool to study the deformation 
capacity of this type of column. Models of this type are particularly useful to study the response 
of columns subjected to bidirectional loading, which are being tested as part of a later stage of 
this research project. All three columns analyzed had similar detailing and material properties, 
with the main differences being the amount of longitudinal reinforcement and the axial load. The 
global response of the analytical model was calibrated based on experimental results from one of 
the pseudo-static column tests and evaluated based on experimental results from the remaining 
two.  
 

Specimen Configuration 
 
 A detailed description of the column specimens and their behavior during the tests are 
presented elsewhere by Matamoros et al. (2008). The reinforced concrete column members had 
an 18 in. x 18 in. [457 mm x 457 mm] square cross section and a 116 in. [2,946 mm] clear 
height.  The top and bottom beams had a 28 in. x 84 in. [711 mm x 2,134 mm] rectangular cross 
section and a 30 in. [762 mm] depth.  The main thrust of the experimental program was to 
investigate the hysteretic behavior and controlling failure mode of the inadequately detailed main 
column member. Consequently, the top and bottom beams were conservatively proportioned to 
limit their contribution to the lateral deformation of the specimen.  A diagram showing specimen 
dimensions and reinforcement details is presented in Fig. 1. 
 
 The square column section had approximately 2.5 % longitudinal steel reinforcement for 
columns 1 and 2 (eight No. 9 bars symmetrically placed around the perimeter of the cross 
section) and 3 % for column 3 (eight No. 10 bars).  The cover, measured from the centerline of 
the steel reinforcement, was approximately 2½ in. (64 mm).  The longitudinal reinforcement was 
developed using 90 deg. hooks extending into the top and bottom beams. Transverse 
reinforcement consisted of No. 3 rectilinear closed hoops spaced at 18 in. (457 mm) on center 
along the full height of the column.  Each rectilinear hoop was developed with a 90 deg. hook 
and a 5db extension beyond the hook. 

 
Material Properties 

 
 The reinforced concrete specimens were cast with normal-weight concrete. The  
maximum size of the coarse aggregate was ¾ in (19 mm). Mix proportions are presented 
elsewhere (Matamoros et al., 2008).  The properties of the concrete are summarized in Table 1. 
 
 
 



 
 

Table 1.  Measured concrete properties for column specimens. 
 

Measured Concrete Property Column 1 Column 2 Column 3
Test Day Compressive Strength, psi (MPa) 4800 (33) 4880 (34) 2510 (17) 

Modulus of Rupture, fr , psi (MPa) 740 (5.1) 870 (5.8) 690 (4.8) 
Modulus of Elasticity, Ec, ksi (GPa) 3770 (26) 3610 (25) 3270 (22) 

 
 ASTM A706 steel was used for all longitudinal bars in the column.  The transverse 
column hoops and all of the beam reinforcement consisted of ASTM A615 steel.  Tensile tests 
were performed on both the No. 9 and No.10 longitudinal bars and No. 3 transverse hoops, from 
which the average yield stresses (fyl) and (fyt) were determined to be 64 ksi (441 MPa) and 54 ksi 
(372 MPa), respectively. 
 
 

Finite Element Model 
 
 As shown in Fig. 2, the finite element model of the assembly consisted of top and bottom 
beams, a square column section, the longitudinal steel reinforcement, and the rectilinear 
transverse steel reinforcement.  The concrete portions of the specimen were represented using 8-
noded quadratic brick elements with embedded steel reinforcement. The reinforcing bars were 
simulated using one dimensional truss elements.   

 
Figure 1.    Specimen dimensions and detailing. 
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During the experimental program post-tensioned rods were used to fasten the top beam to 

the cross head and the bottom beam to the laboratory strong floor.  These rods induced a 
significant amount of compression in both beams. The observed behavior of the specimens 
confirmed that the portions of the top and bottom beams lying outside the square column section 
footprint exhibited essentially linear elastic behavior throughout the tests, thus resulting in 
negligible cracking.  Therefore, to facilitate numerical convergence and reduce computation 
time, these portions of the top and bottom beams were modeled using a linear-elastic concrete 
material model.  The portion of the top and bottom beams lying inside the square column section 
footprint were modeled using the damage plasticity concrete material model implemented in 
ABAQUS.  Likewise, the square column section was defined with the damage plasticity concrete 
material model as described later in this paper.  The longitudinal and transverse steel 
reinforcement were defined with the linear kinematic hardening steel material model, each in 
accordance with their respective measured material properties.    
 

The interaction of the concrete continuum elements with the steel truss elements was 
defined by employing the embedded element technique available in ABAQUS. This technique 
assumes perfect bond between the concrete and the steel reinforcement.  This assumption is 
likely to result in lower estimates of lateral drift during the mid to latter stages of the cyclic load 
history because the bond slip phenomenon at the beam–column interface is neglected.  However, 
experimental results suggested that, given the development length afforded by the beam depth 
along with the brittle response of the column, the amount of lateral deformation related to slip 
was relatively small. For this reason the deformation related to slip was calculated following a 
commonly used methodology (Matamoros, 1999) and subsequently added to the computed 
lateral deflection. Deformations measured at the base of the columns showed that the simple 
bond slip model used in this study provided accurate estimates of rotation at the base due to this 
effect. 

 
The interaction of the concrete surfaces at the beam–
column interfaces was modeled using contact surface 
properties implemented in ABAQUS. The employed 
interaction surface definition precluded any slip between 
the two contact surfaces in the tangential direction. In the 
normal direction, a modified “hard” contact surface 
property was defined such that compressive stresses were 
always transferred across the interface but tensile stresses 
were only transferred if the magnitude was below the 
measured modulus of rupture.  
 

The boundary conditions of the finite element 
model were defined such that the bottom face of the 

bottom beam was restrained in all three translational DOF 
during all analysis steps and the top face of the top beam 
was constrained to the displacement–controlled loading 
histories defined in the various analysis steps.   

  
 

Figure 2.    Finite element mesh. 
 



Concrete Plasticity Model 
 

The concrete damage plasticity model implemented in ABAQUS is based on the 
assumption of non-associated potential plastic flow.  The Drucker-Prager hyperbolic flow 
potential function is implemented herein and can be mathematically expressed as follows: 

 
ܩ ൌ ඥሺߪ ߝ௧௢ ݊ܽݐ ߰ ሻଶ ൅ ଶݍ െ ߰݊ܽݐ ݌       (1)

 
where ߪ௧௢= uniaxial stress at failure. Furthermore, the plasticity model in ABAQUS implements 
the yield function originally developed by Lubliner et al. (1989) and later modified by Lee and 
Fenves (1998) to account for different evolution of strength under tension and compression.  The 
yield function can be mathematically expressed as follows: 
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where, ߪ௠௔௫ =  maximum principal effective stress tensor, ߪ௧ሺߝ௣௟ሻ =  effective tension 

cohesion stress, and ߪ௖ሺߝ௣௟ሻ =  effective compression cohesion stress. Four plasticity parameters 
are required to completely define the damage plasticity model implemented in ABAQUS; 
namely, the dilation angle in the p-q plane (p is the effective hydrostatic stress and q is the Mises 
equivalent effective stress), the flow potential eccentricity, , the ratio of initial equibiaxial 
compressive yield stress to initial uniaxial compressive yield stress (b0 /co), and the ratio of the 
second stress invariant on the tensile meridian to that on the compressive meridian at initial yield 
for any given value of the pressure invariant p such that the maximum principal stress is negative 
(Kc). In order to define the aforementioned plasticity parameters, a suite of laboratory tests are 
required (Jankowiak and Lodygowski, 2005) including: uniaxial compression test, uniaxial 
tension test, biaxial plane state of stress test, and a triaxial test (superposition of the hydrostatic 
state of stress and the uniaxial compression stress). Because the experimental phase of this study 
did not include all the required laboratory tests, the plasticity parameters were calibrated based 
on experimental results from concrete prisms tested by Roy and Sozen (1964) which had similar 
concrete properties. The specimens tested by Roy and Sozen were 5 in. (127 mm) x 5 in. (127 
mm) x 25 in. (635 mm) reinforced concrete prisms with various amounts of transverse and 
longitudinal steel reinforcement. Based on the results of this calibration study, the following 
plasticity parameters were adopted for this study: dilation angle = 35 deg., flow potential 
eccentricity  = 0.10, biaxial stress ratio b0 /co = 1.16, and deviatoric plane parameter Kc = 2 / 3. 

 
 
 



 
Uniaxial Stress-Strain Relationship for the Concrete in Compression 
 

 The uniaxial compressive stress-strain behavior of the concrete was defined using the 
model proposed by Mander et al. (1988). The confined concrete compressive strength (f`

cc) for 
the stress-strain model was calculated based on the general solution of the multiaxial failure 
criterion originally defined by William and Warnke (1975).  The ultimate compressive strain was 
calculated based on a lower bound empirical expression developed for beams by Corley (1966).  
According to Corley the main contributors to the ultimate compressive strain of a flexural 
member are the member width, the internal moment gradient, and the amount of binding 
reinforcement present within the member. 
 

௨ߝ ൌ 0.003 ൅ 0.02 ܾ ൗݖ ൅ ቀ
ఘ"௙೤
ଶ଴
ቁ       (6) 

 
Where, b = width of structural member, z = distance between points of zero and maximum 
moment, ߩ"= binding reinforcement ratio, and ௬݂ = yield stress (in ksi) 
    

Uniaxial Stress-Crack Displacement Relationship for the Concrete in Tension 
 
 The uniaxial tensile behavior was assumed to be linear elastic up to the cracking stress, 
and described by a modified fracture energy model beyond the cracking stress.  The use of  
stress–strain relationships to describe the post-cracking behavior of concrete has been shown to 
introduce mesh sensitivity; that which impedes the ability of the results to converge to a unique 
solution as the mesh is refined because mesh refinement generally leads to narrower crack bands. 
This numerical deficiency is even more of a concern in local regions of a concrete mesh in which 
the concrete has small  amounts of steel reinforcement. This limitation was addressed by 
implementing a stress–crack displacement post cracking relationship based on fracture energy 
concepts (Hillerborg, 1976). Theory suggests that a concrete specimen will crack at some section 
under tensile stresses, and its length will ultimately be determined by the opening of the crack 
after it has been pulled apart sufficiently for most of the stress to be removed.  Thus, the post 
cracking model can be defined by a stress–displacement curve in which the area under the curve 
is equal to the fracture energy.  Hillerborg concluded that a linearly descending post cracking 
curve was appropriate to represent the behavior of plain concrete. 
 

The reinforced concrete column specimens contained a fair amount of longitudinal steel 
reinforcement, therefore it was concluded that the linearly decending post failure curve proposed 
by Hillerborg would not be entirely appropriate for this study.  Instead, a more liberal post failure 
stress–crack displacement curve was utilized allowing for a greater tension stiffening effect to 
occur before complete tensile failure. 
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Figure 3.    Concrete material models – Column 1 
 
Damage Variables 
 

When subjected to cyclic loading, reinforced concrete sustains progressive damage and 
an associated reduction in stiffness.  For reinforced concrete structures located in regions of high 
seismicity, current design codes require that adequate confining reinforcement be provided in 
columns to protect the concrete core from excessive damage, and to prevent buckling of the 
longitudinal reinforcement. The presence of core confinement allows a well detailed column to 
carry axial load even after a primary shear failure.  The main objective of this study, however, 
was to investigate the behavior of reinforced concrete columns detailed according to codes that 
pre-date the 1971 San Fernando Earthquake. Because significant damage and stiffness 
degradation were anticipated, stiffness degradation and stiffness recovery variables were utilized 
in the damage plasticity model. The stiffness degradation variables dc and dt implemented in the 
damage plasticity model of ABAQUS are scalar values that depend on material response 
quantities such as inelastic compressive strain or tensile crack displacement.  As the post-peak 
compressive stress or tensile crack displacement increases the material experiences non-
recoverable damage, and the stiffness of the material degrades after a load reversal takes place.  
This stiffness degradation phenomenon is simulated computationally by reducing the initial 
elastic modulus. The compression stiffness degradation variable is generally defined by an 
exponentially decaying function dependent on a particular field variable.  Total compression 
degradation was not considered in this study due to anticipated numerical convergence issues. 

 

 
Figure 4.    Damage Model Parameters. 
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In this study, the compression stiffness degradation variable was defined by an 

exponential function dependent on the plastic component of compressive strain.   
 

݀௖ ൌ 1 െ ݁ିଷ଴଴ ఌ
೛೗

 (7) 
  
where ߝ௣௟ = plastic component of compressive strain.  In addition, the compression stiffness 
recovery variable was taken to be unity (wc = 1.0) which implies that as cracks close during load 
reversal the compression stiffness is completely recovered.  The tension stiffness degradation 
variable was defined by a linear expression in which a 50 percent reduction in elastic stiffness 
was assumed to have taken place when the critical crack bandwidth value was reached and 98 
percent when twice the critical crack bandwidth value was reached.  The tension stiffness 
recovery variable was taken to be zero (wt = 0). 
 
Reinforcing Steel Plasticity Model 
 

A pressure-independent metal plasticity model was used to approximate the cyclic 
behavior of the ductile steel reinforcement.  The metal plasticity model assumes linear kinematic 
hardening (constant hardening modulus), an equivalent Mises yield surface, and associated 
plastic flow.  In addition, the ratio of plastic modulus to elastic modulus was assumed to be 0.02.  
The fundamental stress–strain curves for the longitudinal and transverse steel reinforcement were 
assumed to be bilinear.  One of the major benefits of employing this type of metal plasticity 
model is that it provides the ability to analytically capture the Bauschinger effect as the 
reinforcing steel undergoes multiple load cycles.   

 
Analysis and Solution Techniques 
 
Analysis Steps 
 
 The entire analysis regime consisted of three 
separate “general static” analysis steps; namely, the 
initial step, the axial step, and the lateral step.  The 
initial step, required by ABAQUS, was used merely 
to define the bottom beam boundary conditions and 
activate the contact surface definitions.  The axial 
step initiated a gravitational field as well as applied 
the prescribed constant axial compressive force to 
the top of the specimen by means of a uniform 
vertical displacement.  The vertical displacement 
was derived based on the desired axial compressive 
force along with the elastic axial stiffness of the 
column.  The axial compressive force was held 
constant throughout the remainder of the analysis regime.  During the lateral step an amplitude 
function, defined by the lateral load protocol shown in Figure 5, was tied to the lateral DOF of 
the top surface nodes of the top beam.  The application of the amplitude function to the top 
boundary conditions induced displacement – controlled cyclic lateral loading.  The successful 
completion of the lateral analysis step defined the end of the analysis regime.   

Figure 5.    Displacement Protocol. 
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Solution Algorithm 
 

An implicit solution algorithm was implemented during this study.  In particular, the 
Newton-Raphson method was used to calculate the response of the columns. An adaptive 
numerical stabilization technique was implemented during the analysis to mitigate local 
numerical instabilities and aid in solution convergence. Analyses involving significant material 
plasticity in localized regions of the finite element model may experience numerical instabilities 
and convergence difficulties.  In ABAQUS this potential problem can be mitigated by 
introducing artificial damping forces of very small magnitude to help avoid excessive element 
distortion and numerical ill-conditioning. The application of small damping forces is the 
underlying concept behind the adaptive stabilization technique.  It should be noted that excessive 
amounts of artificial damping can lead to a gross imbalance of system energy which in turn will 
yield erroneous analysis results.  For this reason care was taken in the implementation of this 
technique to ensure accurate and meaningful analysis results. 
 
Visco-Plastic Regularization 
 

During the experimental program significant material plasticity and associated damage 
was observed near the beam–column interfaces where the greatest moment demand existed.  This 
localized and highly plastic material response lends itself to potential numerical convergence 
issues in a nonlinear finite element analysis.  As such, visco-plastic regularization was 
incorporated into the concrete material model definition in order to mitigate this potential 
convergence problem.  Regularizing the concrete damage plasticity model using visco-plasticity 
allows stresses to breach the yield surface boundary.  The Duvaut-Lions regularization 
methodology was utilized herein where the visco-plastic strain rate tensor and viscous stiffness 
degradation variable are expressed as follows, respectively. 

 

Ԣ௩ߝ
  ௣௟ ൌ ଵ

ఓ
൫ߝ௣௟ െ ௩ߝ
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where ߤ = viscosity parameter, ߝ௣௟ = plastic strain evaluated in the inviscid backbone model, and 
d = damage variable in the inviscid backbone model. The viscosity parameter represents the 
relaxation time of the visco-plastic system.  Furthermore, the solution of the visco-plastic system 
relaxes to that of the inviscid case as the ratio of the characteristic time increment of the analysis 
step to the viscosity parameter approaches infinity.  Therefore, implementing a small viscosity 
parameter magnitude relative to the characteristic time increment of the analysis step generally 
improves the rate of convergence of the nonlinear analysis without compromising the accuracy 
of the results.  Conversely, abusing the regularization technique by using a relatively large 
viscosity parameter can lead to grossly inaccurate results.  In general, an appropriate viscosity 
parameter magnitude depends upon the analysis to be conducted as well as the anticipated 
amount and spread of plasticity (localized versus global).  

 
 
 



Simulation Results 
 

The simulation parameters of the finite element model were calibrated to provide 
accurate estimates of the peak lateral force and peak lateral drift ratio at failure for column 1. A 
detailed description of the progression of damage of the three specimens is presented by 
Matchulat (2008). The model also provided a good representation of the observed mode of 
failure (simultaneous shear and axial failure). 

This mode of failure presented a 
complex computational challenge. 
Figure 6a shows the deformed 
shape of the simulated column at 
failure next to a photograph of the 
actual specimen. The deformed 
shape shows areas of severe 
damage in the regions of maximum 
moment, which is consistent with 
the observed behavior. 
 
Figure 7a shows a comparison of 
the calculated and measured 
hysteresis curves for column 1. 
The analytical model provided an 
accurate estimate of the peak 
lateral load of approximately 90 
kips and a loss of lateral load 
carrying capacity at a lateral drift 
ratio of approximately 1.00%.  The 

brittleness of the simultaneous shear and axial failure is quite apparent from the photograph in 
Figure 6b and the experimental curve in Fig. 7a. The sudden drop in stiffness at a drift ratio of 
approximately -1% corresponds to axial load failure. It should be noted that a “sudden” axial 
failure was not captured in the computer simulations.  Rather, a macroscopic softening effect was 
observed beginning at a drift ratio of approximately 1.00%.  This discrepancy between the 
experimental and analytical results is a consequence of the modeling techniques that had to be 
implemented in order to achieve numerical convergence at axial failure.  It is postulated that the 
inclusion of an element erosion technique may have ameliorated the failure response of the 
computer simulations. The model used to analyze column 1 was subsequently modified to 
perform simulations for columns 2 and 3. Column 2 was identical to column 1 with the exception 
of a lower axial load of 340 kips. Column 3 was delivered the same axial load as column 1; 
however it contained a higher longitudinal reinforcement ratio of 3%. The same analysis 
parameters used in the column 1 model were used for the simulations of columns 2 and 3. The 
results are presented in Fig. 8a and b. The graphs show that the simulations provided an accurate 
estimate of the peak lateral force and associated peak lateral deformation as well as the drastic 
change in stiffness caused by the secondary axial failure of the column.   
 
 
 

 

Figure 6.    (a) Deformed Shape near failure (b) Actual 
Column 
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Conclusions 
 

A plasticity-based analytical model was successfully implemented to calculate the lateral 
load and deformation capacity of reinforced concrete columns at axial failure.  The analytical 
model was verified with a series of shear-critical column tests that experienced a secondary axial 
failure.   

 

 
Figure 7.    (a) Comparison of experimental and calculated hysteretic response for column 1 (b) 
Bond slip effect on analytical axial load versus lateral drift ratio response  

Figure 8.    (a) Comparison of experimental and calculated hysteretic response for column 2 (b) 
Comparison of experimental and calculated hysteretic response for column 3. 

 
Based on the results of this study, it is concluded that the model presented herein is well 

suited to conduct preliminary investigations on the behavior of shear-critical columns with high 
levels of axial load, to gain a better understanding of the parameters that influence the 
deformation capacity of this type of column, and/or to evaluate possible retrofit measures.  This 
model constitutes a first step in developing high resolution simulations of columns that are 
expected to fail in shear and understanding how and when that failure precipitates a secondary 
axial failure.  Further validation will be conducted upon completion of the experimental 
program. 

 

‐100

‐80

‐60

‐40

‐20

0

20

40

60

80

100

‐2 ‐1.5 ‐1 ‐0.5 0 0.5 1 1.5 2

La
te
ra
l L
o
ad

 (k
ip
)

Lateral Drift Ratio (%)

Analytical Results
Lateral Load Failure ‐ Experimental vs. Analytical

Analytical ‐ Bond Slip Experimental

‐100

‐80

‐60

‐40

‐20

0

20

40

60

80

100

‐2.5 ‐2 ‐1.5 ‐1 ‐0.5 0 0.5 1 1.5 2 2.5

La
te
ra
l L
o
ad

 (
ki
p
)

Lateral Drift Ratio (%)

Analytical Results
Lateral Load Failure ‐ Experimental vs. Analytical

Analytical ‐ Bond Slip Experimental

‐600

‐500

‐400

‐300

‐200

‐100

0

‐2 ‐1.5 ‐1 ‐0.5 0 0.5 1 1.5 2

A
xi
al
 L
o
a
d
 (k
ip
)

Lateral Drift Ratio (%)

Analytical Results
Axial Load Failure ‐ Bond Slip Effect

Analytical ‐ No Bond Slip Analytical ‐ Bond Slip



The calculated column responses shown in Figures 7 and 8 represented the measured 
responses very well, and the observed mode of failure was captured by the computational model; 
although in a less brittle manner.  This is one limitation of the plasticity-based concrete material 
model and nonlinear solution technique implemented in this study.  The sudden brittle failure of 
the column specimen constitutes a large response discontinuity, and during severe discontinuities 
it is very difficult to obtain convergent numerical solutions.  Numerical techniques such as visco-
plastic regularization and adaptive stabilization were implemented in the analyses to mitigate the 
problem posed by severe response discontinuities.  Another consequence of the numerical 
techniques utilized during this study was the resulting widths of the calculated hysteretic loops 
shown in Figures 7 and 8 relative to the observed values.  A less conservative definition and 
evolution of the progressive concrete damage would have yielded narrower hysteretic loops, 
closer to those observed during the experimental program.  However, a more aggressive 
definition of concrete damage would have resulted in more severe numerical convergence issues.  
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