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ABSTRACT  

 There is considerable research interest in the area of system identification of 
buildings using in-situ vibration measurements. The identification of system 
properties of the existing structures is important to evaluate structural damage and 
to ascertaining its present condition. The identified system parameters can be used 
to evaluate the expected structural responses to future earthquake excitations. The 
design and modification of structural control systems also needs knowledge of the 
system parameters of the structure. In this study, the modal model of the existing 
structure is extracted from the measured earthquake responses where the 
excitation measurement is not available. After determining structural dominant 
modal frequencies and damping ratios, the mode shapes are obtained at the 
instrumented floor level. Since the mode shapes are extracted only at 
instrumented floor level, a new mode shape estimation technique based on 
interpolated responses has been proposed by the authors to estimate the mode 
shape at other floor levels. Numerical investigation of an 8-story torsionally 
coupled building shows that the proposed system identification technique is able 
to identify dominant structural modal parameters even with the high-level noise 
content in the measurements. The numerical verification of the proposed system 
identification technique is conducted on a 6-story model building subjected to 
base excitations. Since the dominant frequencies, damping ratios, and the mode 
shapes are estimated accurately, the unmeasured floor responses can be 
determined with low error. The Finite Element model can be updated using the 
modal parameters extracted from the vibration records taken on the building. The 
updated model can be used to predict the response to future base excitations.    

Introduction  

 Vibration monitoring is a well-known technique for damage identification and condition 
assessment of civil engineering structures. The modal parameters of a structure can be 
determined from the vibration data using system identification methods. The data recorded 
during seismic excitation can also be used for system identification and model updating methods. 
For structures damaged due to earthquakes, the change in strength due to retrofitting can be 
ascertained by comparing its dynamic properties identified before and after retrofitting. Due to 
economical considerations, the responses are commonly recorded at only few locations on the 
structure. This paper describes a method that uses interpolation techniques to increase the                     
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number of available responses for system identification for shear buildings subjected to base 
excitation. The responses at non-instrumented floor levels of building are reconstructed by 
interpolating using spline shape function. The recorded and reconstructed responses are used in 
system identification algorithm to extract the modal properties of the building (natural 
frequencies, damping ratios and mode shapes). A rigorous analysis procedure that extends the 
spline shape function method to shear building for identifying effective locations of sensors is 
used. The error in the reconstructed responses are defined by global minimax error and used in 
identifying locations of sensors on the building. 
 

 Traditional system identification techniques require measurement of input excitations and 
its corresponding responses (Kozin 1986). However, a real structure usually possesses a large 
number of degrees of freedom making it very expensive if not impossible to acquire full 
measurements of all significant degrees of freedom because of limited number of sensors. Thus, 
system identification based on response measurements of a few degrees of freedom becomes 
very useful from practical considerations. There are several different approaches to extract 
modal parameters from limited response measurements using general input (earthquake base 
excitation) and output (floor response to earthquake) method. The Eigen Realization Algorithm 
(ERA) and Observer/Kalman filter Identification (OKID) approach has been used to identify the 
modal parameter from earthquake induced time histories of the structural response (Lus et al. 
1999). Comparative studies have highlighted the difference and similarities in current modal 
identification algorithms, viz. Least-Squares Complex Exponential (LSCE), the poly reference 
time domain (PTD), Ibrahim time domain (ITD), and Eigen-system Realization Algorithm 
(ERA), Rational Fraction Polynomial (RFP), Poly Reference Frequency Domain (PFD), and 
Complex Mode Indication Function (CMIF) methods (Allemang et al. 1994). In many of these 
studies the modal parameters are extracted by modeling building as a linear system with only 
one or two translational DOF per floor. 
 
 The accuracy of proposed system identification method depends on location of sensors 
on the structure. To come up with accurate modal parameters, one often needs to collect response 
data from instruments located at various positions within the structure. For given types of 
instruments, which are to be used, one often wants to locate them such that data collected from 
those locations yield the best estimates of the modeled structural parameters. There are several 
different techniques proposed for optimal sensor locations for recording structural vibrations 
(Udwadia 1994, Heredia and Esteva 1998). For example, a spline shape function error criterion 
has been proposed for the choice of optimal location of a limited number of recording sensors for 
reconstruction of seismic responses of multi-storey frames (Limongelli 2003). Reconstruction of 
unknown responses in this method is performed by modeling the evolution of relative 
acceleration along the height of the building through a cubic-spline shape function. Many of the 
methods discussed above are found suitable for parameter identification of mechanical structural 
components and are not been adequately explored for civil engineering structures. In this paper, 
a method has been devised and used to determine modal parameters of torsionally-coupled 
building from reconstructed earthquake responses. The proposed system identification method   
considers the linear behavior of the structures subjected base excitations. 



Torsionally-Coupled Shear Building 
 
 In this study, the building has been idealized as consisting of rigid floors supported on 
mass less axially inextensible columns and walls. The general torsionally-coupled multi-story 
shear building considered in this study as shown in Fig 1 has the following general features: (1) 
The principal axes of resistance for all of the stories are identically oriented along the x-and y-
axes shown in the Fig 1, (2) The centers of the mass of the floors do not lie on a same vertical 
axis, (3) The centers of resistance of the stories do not lie on a same vertical axis, i.e., the static 
eccentricity at each story are not equal, (4) Floors may have different radii of gyration, r, about 
the vertical axis through the centre of mass, (5) The ratio of three stiffness quantities, the 
translational stiffness in x and y-directions, xK , yK , and K  torsional stiffness for any story 

may be different. For the above general torsionally-coupled N-storey shear building, each floor 
has three degrees-of-freedom (DOF), x- and y-displacements, relative to the base and rotation 
about a vertical axis. For floor i, the DOFs are denoted by subscripts x , y  and  , respectively. 
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Figure 1: Torsionally coupled multi-storey building. 
 



For an N-storey shear building as shown in Fig 1(c), ix , iy  and i  are displacements in  x, y and 

 -direction of the centre of mass of the i-th floor. The stiffness of i-th story in x, y and  -
direction are denoted as ( )x iK , ( )y iK  and ( )iK , respectively. In this figure, ( , )x i iF  , ( , )y i iF , and 

( , )i iF are forces acting on i-th floor at Centre of Resistance ( iCR ) due to the eccentricity of  i-th 

story and ( , )x i i 1F  , ( , )y i i 1F   and ( , )i i 1F   are the forces acting on the i-th  floor at i 1CR   due to 

eccentricity of ( )i 1 -th story. The static eccentricity of the floor are denoted by ( , )x i je  and 

( , )y i je  , where j i  for the story considered and j i 1   for the eccentricity due to story above. 

The base excitations in x- and y-directions, respectively, are given by gx  and gy . The forces 

acting on the floors can be evaluated considering the resistive force generated by story above and 
below each floor. The detailed force calculation and formulation of stiffness and mass matrix has 
been presented in literature (Uneg et al. 2000). Now, the undamped dynamic equations of motion 
for the building subjected to two horizontal ground accelerations gx and gy assumed to be the 

same at all points of the base can be expressed in the matrix form as 
 

   gM u K u M r u    (1) 

Where, M is the mass matrix, u  is the displacement vector with respect to the base, r is the force-influence 
vector, K  is the stiffness matrix, and 

 1 2
T

Nu= u u u ,   0 T
g g gx yu =    (2) 

 1 2
T

Nr = r r r ,  diag 1 2 NM M M M  (3) 
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Further, the submatrices are given as follows 
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r ,  T
i i i ix y u ,  and  diag i i im m IiM   (5) 

 

where ir  is the force influence coefficient matrix with elements equal to 0 and 1, im is the 

lumped mass of i-th floor, and iI  is the mass moment of inertia of the i-th floor. The formulations 

of the stiffness sub-matrices ( 11K , 12K  , …, NNK ) follow the procedure given by Uneg et al. 

(2000). After formulating the mass and stiffness matrices, the natural frequencies and mode 
shapes of the building are obtained by solving the corresponding eigenvalue problem. 



 The damping in the building has been represented by its Raleigh damping matrix, with 
defined damping ratio for each natural mode of vibration. In most cases of structural engineering 
interest, modal damping ratios are used in the computer model to approximate nonlinear energy 
dissipation within the structure. In this paper, Raleigh damping has been considered to include 
the influence of all sources of energy dissipation in the building that behaves linearly, thereby 
avoiding the need to formulate the damping matrix based on the physical properties of the real 
structure (Hart and Wong 1999).  
 

System Identification Using Reconstructed Seismic Responses  
 

 The technique to reconstruct unmeasured floor level responses without using the mode 
shape coefficients has been presented by (Limongelli 2003). In this approach, a spline based 
reconstruction is applied to plane multi-storey shear frames having similar system properties at 
each story level. The frame was modeled as lumped mass system with one DOF per floor. The 
technique was applied to reconstruct the seismic response of real building frames. The 
application of the said technique to other types of structures different from multi-storey shear 
plane frames has not been investigated in the published literature. In the present study, this 
approach is extended to a general multi-storey shear building (different mass and stiffness for 
each story with varying eccentricity for each floor) modeled as lumped mass shear system with 
three DOF per floor. The assumptions made in the investigations by (Limongelli 2003) are also 
applicable in this study. The assumptions are: (1) The responses in terms of absolute acceleration 
available in a limited number of locations along the building height and the input ground 
acceleration is known, (2) The evolution of relative displacement x of the building along its 
height z can be modeled by means of a function of position and time ( , )x z t , and (3) The second 
derivative of relative displacement with respect to time gives the evolution of the relative 
acceleration along height of the building. 
 

 By knowing the input base acceleration, ( )gu t , the time history of absolute acceleration 

( , )u z t  at a given location on a building can be evaluated by solving Eq. 1. However in practice 
sensors are used to record the accelerations at only a few DOFs of the building. The locations 
where responses are recorded by sensors are assumed as knots of the spline function and, for 
each time instant, the unknown coefficients in the spline function are determined from 
continuity, interpolation and boundary conditions. The advantage of spline functions as 
interpolating functions is that among all twice differentiable functions approximating a given set 
of data, the spline functions are the ones corresponding to the minimum value of the overall 
curvature. A detailed discussion on the use of cubic spline interpolation function can be found in 
published literature (for example, Limongelli 2003). The advantage of this method is that the 
responses at non-instrumented floor levels are obtained by interpolating the recorded responses 
at instrumented floor level, without using the mode shapes of the building. 
 

 The modal parameter of general torsionally-coupled building can be extracted from the 
recorded vibration signatures using different techniques. To extract the first few natural 
frequencies, it is sufficient to have vibration record at the top floor level (Mau and Aruna 1994). 
In this case the complete mode shape is not identified. To identify complete mode shapes one 
need to have simultaneous vibration records at all floor levels or use mode shape interpolation 
techniques or modal expansion techniques. It has been shown that vibration records collected at 



top and first floor level are sufficient to get the complete mode shapes of a symmetric 
torsionally-coupled shear building (Hegde and Sinha 2008). The mode shape interpolation 
techniques can be applied if the building is symmetric and follows uniform shear criterion (Mau 
and Aruna 1994). In case of general torsionally-coupled multi-story building one cannot expect 
to have uniform shear at all floor levels. Modal expansion techniques fetch good result only if 
experimentally identified mode shapes coefficients are available at sufficient degrees of freedom. 
Most of the expansion techniques use finite element model as a mechanism to obtain mode shape 
coefficients at unmeasured degrees of freedom from the experimental modal model (Leandro et 
al. 2006). Hence in this paper a different technique has been proposed to obtain the complete 
mode shapes, using vibration records at limited number of locations along the height of the 
building. 
 

 

 
Figure 2.  Flow chart for system identification of general torsionally-coupled building. 

 

 In typical problems of forced vibration of buildings, it is difficult or impossible to 
measure the frequency response functions or Transfer Function (FRFs or TFs) derived from 
recorded excitation and structural responses, and hence these quantities are not available for 
modal property extraction. . In this study, modal identification was performed using only the 
response measurements, hence the parameter identification procedure based on Natural 
Excitation Technique (NExT) (Farrar and James, 1997), which utilizes the cross-correlation 
between measured responses, has been implemented for general torsionally-coupled building 
without using recorded excitations. The time domain curve fitting algorithms such as 
polyreference method, complex exponential method, or eigensystem realization algorithm (ERA) 
(Juang and Pappa 1985), Ibrahim Time Domain method (Ibrahim and Mikulcik 1997), which is 
developed to analyze the impulse response functions, can be applied to cross-correlation 
functions to obtain resonant frequencies and modal damping exhibited by the structure (Caicedo 



et al. 2004). 
 

 In the present study modal parameters are extracted using the principles of NExT and 
ERA. The detail procedure is presented in the flow chart shown in Fig 2. The unmeasured floor 
responses are obtained by interpolating the available measured responses using cubic spline 
method explained earlier (Limongelli 2003). Thus the complete set of all floor response are made 
available for parameter identification. The cross-correlation between each floor responses with 
respect to referenced measurement is used in Eigen Realization Algorithm for identifying first 
few resonant frequencies, damping ratios and their complete mode shapes (Juang and Pappa 
1985).  In case of typical torsionally-coupled buildings, the first few modes have the highest 
contribution to the effective mass participation (Chopra 2004). It is also well known that the 
mode shapes are linearly independent of each other. When a building is subjected to base 
excitations, the lower modes contribute more to the vibration response than the higher modes. 
Hence it is important to accurately capture the first few modes of vibrations. 
 

Numerical Verification  
 
 A 6-storey torsionally-coupled shear building has been considered for numerical 
evaluation of the procedure. First a simulation is carried out to verify the effectiveness of the 
spline function in interpolating the acceleration responses along the height of the building. The 
physical properties of the example building are given in the Table 1. 
 

Table 1. System properties of the example building 
 

Floor
(i) 

Mass 

im (kg) 

Moment 
of Inertia, 
I (kg.m4) 

C.M. 
( , )x y  
(m) 

Story
(i ) 

xK   

(N/m) 
yK  

(N/m) 

K  

(N/m) 

C.R. ( , )x y
(m) 

1 200000 1.28×107 (1.0,1.0) 1 9.0×108 8.5×108 5.0×1010 (4.0, 4.0) 

2 200000 1.28×107 (1.0,1.0) 2 9.0×108 8.5×108 5.0×1010 (4.0, 4.0) 

3 200000 1.28×107 (1.0,1.0) 3 9.0×108 8.5×108 5.0×1010 (4.0, 4.0) 

4 190000 1.07×107 (0.8, 0.9) 4 8.5×108 7.5×108 4.5×1010 (3.2, 3.0) 

5 190000 1.07×107 (0.8, 0.9) 5 8.5×108 7.5×108 4.5×1010 (3.2, 3.0) 

6 190000 1.07×107 (0.8, 0.9) 6 8.5×108 7.5×108 4.5×1010 (3.2, 3.0) 

 

 In this example, it is assumed that the sensors are located at first floor, third floor and 
fifth floor level (based on rigorous analysis results) and the acceleration responses are recorded 
only at these floor levels (Hegde and Sinha 2007). The numerical model is subjected to 
unidirectional earthquake at the base (1940 El-Centro North-South component) and responses at 
all floor levels are obtained in the three directions. The system damping is introduced as the 
viscous damping ratios in each vibration modes. The calculated earthquake base excitation 
responses at floor levels are added with noise up to 20% (RMS) to simulate actual field 
measiurements. A cubic spline interpolation method described in Limongelli (2003) has been 
used to calculate the responses at unmeasured floor levels. The acceleration time responses at 2-



nd, 4-th and 6-th floors are reconstructed by interpolating the recorded acceleration time 
histories at 1-st, 3-rd and 5-th floor levels. The spline interpolations are carried out separately for 
each direction. Fig 3 shows the comparisons of some of the reconstructed responses at 
unmeasured floor levels. 
 
 It is seen that the reconstructed responses are a good approximation of their actual values, 
and this simple example demonstrates the accuracy of cubic spline function to reconstruct 
unmeasured responses. Using the reconstruction technique, the responses at all floor levels 
become available for modal parameter identification. The Cross Power Spectral Density (CPSD) 
functions are calculated for all floor responses taking the first floor responses (x, y and rotational 
responses) as the reference measurement. The cross-correlation functions are obtained by inverse 
Fourier Transform of CPSD. Thus a total of six cross-correlation functions for each direction for 
each reference measurement, totaling 54 CPSDs are used in Eigen Realization Algorithm (ERA) 
for modal parameter identification. A Hankel matrix H of size (100 100)  is constructed using 
the CPSD functions. The Singular Value Decomposition of H  is carried out to determine the 
state space matrices A, B and C. These matrices are further modified by eliminating the rows and 
columns corresponding to the smaller singular values produced by computational modes 
(Caicedo et al. 2004). The modified matrices (22 22)A , (22 3)B  and (18 22)C  are used to extract the 

modal properties of the example building. The natural frequencies are obtained by Eigen analysis 
of system matrix (22 22)A . The mode shapes corresponding to all 18-DOFs are obtained by 

multiplying eigenvector of (22 22)A  with the output matrix (18 22)C . 

0 2 4 6 8 10 12 14 16 18 20
-1.0

-0.5

0.0

0.5

1.0

 Time (sec)

0 2 4 6 8 10 12 14 16 18 20
-1.0

-0.5

0.0

0.5

1.0

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

0 2 4 6 8 10 12 14 16 18 20
-1.0

-0.5

0.0

0.5

1.0
 Exact
 Reconstructed

Second Floor x-direction

Fourth Floor x-direction

Sixth Floor x-direction

 
Figure 3. Floor responses of example building. 

 
 The frequency stability diagram is used to identify the stable frequencies among the ERA 
extracted modes. The identified frequencies and damping ratios are given in the Table 2, and are 



found to be good agreement with their actual values. 
 

Table 2. Identified System properties of the example building 
 

Frequency (Hz) Damping (%) Mode 
Actual Identified Actual Identified 

1 1.61 1.59 5.00 9.69 
2 2.56 2.59 4.18 3.92 
3 3.23 3.20 4.12 3.08 
4 5.61 5.93 4.86 3.55 
5 7.30 7.49 5.73 4.65 

  
 The mode shapes extracted from the set of reconstructed responses have compared with 
their actual values to illustrate the accuracy of mode shape determination procedure. Fig. 4 
shows the first mode shape corresponding to 1.61 Hz, when compared with the mode shapes 
obtained by proposed method using ERA. It is seen that the extracted mode shapes are in 
excellent agreement with their actual values in terms of shape; however there is some error in its 
magnitude. The error is found to be more in the rotational direction when compared to two 
translation directions. This illustrates that the method accurately determines the complete mode 
shapes of the structure and is comparable to the other methods proposed in literature (Ibrahim 
and Mikulcik 1997). 
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Figure 4. Mode shapes extracted from reconstructed responses. 

 
Conclusions 

 

 This paper presents a method for determining structural modal properties when responses 
of a torsionally-coupled shear building subjected to base excitations are recorded at only a few 
floors. The investigations show that the cubic spline shape functions can be used for 



reconstruction of unmeasured floor responses. The reconstruction of responses of torsionally-
coupled shear building has been performed by extending the spline shape function method. The 
investigation also show that the accuracy of reconstructed responses increase with number of 
sensors used for recording. The parameter extraction from the set of reconstructed and actual 
responses are carried out and found to be effective in identifying first few fundamental 
frequencies and corresponding complete mode shapes. The effective location of the senor has 
been determined based on minimum error criteria in the reconstructed responses. The identified 
modal properties have been compared to their actual values using correlation techniques. The 
correlation results show good accuracy in the identified frequencies and mode shapes for first 
few fundamental modes. The Finite Element model can be updated using the modal parameters 
extracted from the vibration records taken on the building. The updated FE model can be used to 
predict the response to future base excitations. The procedure can be effectively applied for 
condition assessment and structural health monitoring problems since vibration records are 
required at only a few floor levels, and the fundamental frequencies and mode shapes are 
identified with required accuracy.  
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