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ABSTRACT 
 

  In this paper using a 3DOFs analytical model an approximate method is 
presented for dynamic analysis of highway skewed bridges with continuous deck. 
In modeling of the superstructure it is assumed that the deck is rigid in-plane. the 
stiffness of substructure and shear stiffness of the elastomeric bearings on the two 
abutments are modeled with linear springs. To calculate the natural circular 
frequencies and internal forces of skewed bridges, simplified formulae are 
presented. The capability and accuracy of the proposed method is compared with 
a finite element model. Results indicate that this method is capable for dynamic 
analysis of the highway skewed bridges with continuous deck in preliminary stage 
of design process. Moreover, the preliminary values of this method can help to 
identify the unknown errors occur during FE modeling of the structure.  

 
 

Introduction 
 

 Dynamic behavior of  highway bridges during earthquakes is complex and depends on 
the dynamic characteristics of the bridge. Therefore, understanding the effects of these 
characteristics is important for seismic analysis of the highway bridges. Skewed bridges are 
commonly used as overcrossings in highway intersections and interchanges, especially in 
crowded urban areas where lack of space necessitates the use of skew geometries. This type of 
bridge shows unusual behavior under dynamic load and was found to be quite susceptible to 
severe damage during the 1971 San Fernando and 1994 Northridge earthquakes (Wakefield et al 
1991, Meng and Lui 2000). Hence, the necessity of understanding this complex behavior and 
effective important characteristics is felt. The dynamic characteristics of structures, such as 
circular frequencies and mode shapes, are usually determined by Finite Element Model (FEM) in 
final stage of the design process. Some simplified approaches for seismic calculation of tall 
buildings subjected to earthquake have been presented (Meftah et al 2007). However for highway 
bridges it has not been explicitly discussed. In an early work, the rigid body motions of skewed 
bridges using a one-dimensional rigid bar was truly analysed (Maragakis 1984). But the way of 
determination of natural frequencies and mode shapes was not explicitly discussed. An analytical 
solution for free vibration problem of single-span skewed bridge with symmetric slab-beam, was 
derived (Maleki 2000). However, the effect of stiffness of the skewed substructure was not 
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considered. In this paper an approximate hand-method is presented for dynamic analysis of 
highway skewed bridges with continuous deck. The purpose of this paper is to develop a simple 
approximate expression for the calculation of the natural frequencies and seismic loads of the 
highway skewed bridge. It is assumed that the deck is rigid thereupon rigid body motion are the 
predominate motion of the bridge. The stiffness of substructure as well as the shear stiffness of 
elastomeric bearings are modeled with linear springs. The equation of motion and frequency 
equation are derived. Accuracy of the proposed method is surveyed using a FEM of a highway 
skewed bridge with continuous deck. It is shown that the presented equations are capable of 
studying the natural circular frequencies and mode shapes of a skewed bridge. The proposed 
method is simple and accurate enough to be used at the concept design stage in particular. It can 
be useful to verify the results of the FEM where the time-consuming operations and handling all 
the data can always be a source of error. Also, in next step of the research plan, authors of this 
paper are going to apply the presented model to control the undesirable seismic behavior of 
skewed bridges by using semi-active methods.     

 
Dynamic model and equations of motion 

 
Dynamic model 

 
 It is assumed that the deck of the bridge is rigid in-plane and the material remains linear 
during earthquake excitation. Consider Fig. 1 which shows an analytical model of a typical 
asymmetric highway skewed bridge with continuous deck. In the model the point O(0,0) is the 
coordinate origin. X and Y are longitudinal and transverse coordinate axes, respectively. N and T 
coordinate axes were obtained by counter-clockwise rotating X and Y axis through an angle β 
about the origin, as shown in Fig. 1. The angle β is the skew angle of the bridge. The point 
Cm(Xm,Ym) is the mass center of the bridge, UX, UY and Uθ are the degrees of freedom of the 
model that are put at the mass center. The points Css(esx,esy) and Csb(ebx,eby) are the stiffness 
centers of the substructure and elastomeric bearings with respect to the mass center, respectively. 
The coordinate of the stiffness center of substructure in the NT coordinate system is also shown 
with Css(en,et). The stiffness of substructure is modeled with two linear translational springs KN 
and KT and a linear torsional spring Kθ. In addition, the shear stiffness of elastomeric bearings on 
the abutments is modeled with two linear translational springs KbX and KbY where 
KbX=KbY=nbkb. To compare with a realistic model, the elevation of a highway skewed bridge is 
shown in Fig. 2. 
 
 
Equations of motion 
 
 The governing equation of the model in Fig. 1, subjected to strong ground motion can be 
written as follows: 
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Where {Ü(t)}, {Ủ(t)} and {U(t)} are the relative acceleration, velocity and displacement vectors 
of the mass center of the model and {Üg(t)} is ground acceleration vector. [M], [C] and [K] are  



 
mass, damping and stiffness matrices of the system. For the simplicity, the effect of rotational 
acceleration of ground on the model is neglected; hence, it is assumed that Ügθ(t)=0.    
 The mass matrix and mass moment of inertia of the superstructure about the vertical axis 
passing through the center of mass of the bridge are defined as follows: 
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Where M is the summation of the masses of the substructure and superstructure, MSupStr is the 
mass of the superstructure which is equal to ΣMdi+ΣMci. rz is radius of gyration of the 
superstructure. In the first term of Imz, Mdi is mass of the deck in the i-th spans. Ldi and W are the 
length and width of the deck in the i-th span respectively. P is equal to W×tan(β). Also dzdi is the 
horizontal distance between the mass center of the deck of the i-th span and the mass center of 
the bridge. For the second term, Mci is mass of the i-th capbeam. Lci and Wci are the length and 
width of the cross section of the i-th capbeam, respectively. Also dzci is the horizontal distance 
between the mass center of the i-th capbeam and the mass center of bridge. Note that, due to the 
assumption of a direct connection between the capbeams and deck, the rotational inertia of them 
is considered in the formulations. However, the rotational inertia of the substructure is neglected. 
 Stiffness matrix of the model in XY coordinate system is defined as [K]=[Ks]+[Kb]. 
Where [Ks] and [Kb] are the stiffness matrices of the substructure and elastomer bearings, 
respectively. To develop the stiffness matrices of the substructure and elastomer bearings, the 
direct equilibrium method mentioned in text books on structural dynamics is employed (Chopra 
1996, Clough and Penzien 2003). Hence, the matrix [Ks] in NT coordinate system can be written 
as follows: 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++−
+
−

=

θKKeKeKeKe
KeK0
Ke0K

K

T
2

nN
2

tTnNt

TnT

NtN

NTs    and
sysxt ecosesine β+β−=  

(3) 
sysxn esinecose β+β+=  

Figure 2.  The elevation of a highway skewed 
bridge 

Figure 1.  The 3DOFs dynamic model of a 
highway skewed  bridge with continuous deck 



And the matrix [Kb] in XY coordinate system can be written as follows: 
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Where kb is the shear stiffness of an elastomer bearing, and nb is the number of the elastomer 
bearings on two abutments. Also ebx and eby are stiffness eccentricities of elastomer bearings in 
X and Y direction with respect to the mass center, respectively. (xbmi,ybmi) is the coordinate of 
the i-th elastomer bearing on two abutments with respect to the mass center. To state the stiffness 
matrix of the substructure in XY coordinate system, [Ks] can be written as [Ks]XY=[T]T[Ks] XY[T] 
where [T] is the transformation matrix and is defined as follows:   
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Finally, we have: 
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Where: 
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Here, kni and kti are flexural stiffness of the i-th column of substructure in N and T directions, 
respectively. kθi is the torsional stiffness of the i-th column of substructure about its vertical axis 
passing through the centroid of section. esx and esy are the stiffness eccentricities of substructure 
in the X and Y directions with respect to the mass center, respectively, and can be expressed as 
follows:  
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Where (xsmi,ysmi) is the coordinate of the i-th column of substructure with respect to the mass 
center. 

 
Natural circular frequencies and mode shapes 

  
 Natural circular frequencies of the model in Fig. 1 are obtained from the solution of free 
vibration equation of a similar undamped system by using classical damping assumption. The 
uncoupled circular frequencies of the system are defined as follows: 
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Where ωXY is called the uncoupled cross circular frequency and is an important characteristic for 
a skewed bridge. It should be noted that for a straight bridge (β=0) ωXY=0. Considering above 
definitions, the frequency equation can be written as follows: 
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Where α=MSupStr/M and: 
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Neglecting the shear stiffness of the elastomer bearings (ΨX=ΨY≈0), the frequency equation of 
the model can be written as follows: 
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Where A, B, C, D and other parameters are defined as follows: 
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Note that neglecting the effect of elastomer bearings does not reduce the generality of the 
problem, because typical value for the shear stiffness of elastomer bearings is about 1000 to 
2000 kN/m and in practice the order of parameters ΨX and ΨY is approximately 10-3~10-2 (Naeim 
and Kelly 1999). 
 In the analysis stage the RSA method is used for dynamic analysis of the model and the 
Complete Quadratic Combination (CQC) with damping ratio ξ=5% for the three modes is 
employed to combine the modal maximum responses. Finally, the maximum responses of the 
presented model subjected to the longitudinal and transverse translational acceleration are 
obtained using the square root of the sum of the squares (SRSS) (Chopra 1996, Clough and 
Penzien 2003).  

 
Numerical example 

 
 The high torsional strength of the concrete box girder makes it particularly suitable for 
skewed piers and abutments, superelevation, and transitions such as interchange ramp structures 
(Lyang et al 2000). On the other hand, in this type of bridge capbeams are embedded in the deck 
and there is a direct connection between the deck and capbeams. In order to verify the accuracy 
of the proposed method in evaluation of the dynamic characteristics of the skewed bridges, a 
familiar highway skewed bridge with continuous deck in the literature is analysed (Wakefield et 
al 1991, Meng and Lui 2000, Jennings et al 1971). In Fig. 3, the plan, elevation, section of 
intermediate pier and cross section of the columns of southeastern bridge of Foothill Boulevard 
Undercrossing is shown. As can be seen in Fig. 3, this skewed bridge is a four-span continuous 
reinforced concrete box girder bridge with a skew angle of about 60˚. During the San Fernando 
earthquake on February 9th, 1971, this bridge suffered heavy damage in columns of the 
intermediate pier (Jennings et al 1971). It is assumed that the vertical translation and rotation 
about the longitudinal axis of the deck are restrained at the abutments. Also, the base of the 
columns in Bents 2 and 4 are modeled as pinned but those of the columns in Bent 3 are modeled 
as fixed. The retaining walls are not explicitly modeled in the analysis because the stiffness of 
the bents is not significantly affected by retaining walls (see Fig. 3). The capbeams are modeled 
as rigid beams to prevent excessive deflection. The modulus of elasticity is E=21689 MPa, 
Poisson's ratio is ν=0.2 and shear modulus is G=9037 MPa. The yield strength of the steel 
reinforcement is 270 MPa and compressive strength of concrete is 21 MPa. It is assumed that the 
mass density of reinforced concrete is about 2400 kg/m3 (Meng and Lui 2000). The FEM of this 
bridge in SAP 2000 finite element program (SAP 2000 V.9) is shown in Fig. 4. Frame elements 
are used to model the columns and capbeams and four-node quadrilateral shell elements are used 
for modeling the rigid deck. Rigidity of the deck is achieved by assigning large values of  



 

 
Figure 3. The pan, elevation, section of intermediate pier and cross section of columns of 

southeastern bridge of  Foothill Boulevard Undercrossing (Unit: m). 
 
modulus of elasticity to the shell elements. To model the elastomer bearings linear springs are 
used. The two components of the horizontal pseudo spectral acceleration of San Fernando 
earthquake on February 9th, 1971 with magnitude 6.6 M recorded in Pacoima Dam station 
(PEER Strong Motion Database) are used to analyze the FEM. Then, the dynamic characteristics 
and the response of the bridge to the earthquake will be calculated by the introduced hand-
method and will be compared with the results of the FEM. 
 Analytical model of the Foothill Boulevard Undercrossing is shown in Fig. 5. It is seen 
that this model is an asymmetric bridge with an eccentricity in the X direction. The total mass of 
the bridge is M=2951140.8 kg and the mass moment inertia of the superstructure is 
Imz=2.377×109 kg.m2. The mass center is Cm(25.898m,8.638m) with respect to the point O. The 
cross section of the columns is equated with a circular cross section with a diameter of D=1.269 
m. Columns in Bent 2 and Bent 4 are fixed at top end and pinned at the base and the translational 
stiffnesses are kn=kt=41044kN/m and torsional stiffness is kθ=0. Columns in Bent 3 are fixed at 
two ends, the translational stiffnesses are kn=kt=164175.9kN/m and the torsional stiffness is 
kθ=391642.9kN.m. A typical shear stiffness for elastomer bearings has a value of kb=1500kN/m 
and also, nb=16. The stiffness eccentricities of the elastomer bearings using Eq.(4) are 
ebx=1.051m and eby=0 and the stiffness eccentricities of the substructure using Eq.(8) are esx=-
3.520m and esy=0. Total translational and torsional stiffness of the substructure using Eq.(8) are 
KN=KT=985055.2 kN/m and Kθ=3.663×108 kN.m and total shear stiffness of the elastomer 
bearings is nbkb=24000kN/m. Uncoupled circular frequencies using Eq.(9) are obtained as 
ωsX=ωsY=18.270 rad/sec, ωsXY=0, ωθ=12.414 rad/sec and ωb=2.852 rad/sec. The Natural circular 
frequencies using Eq.(12) are ω1=12.265 rad/sec, ω2=18.491 rad/sec and ω3=18.728 rad/sec. To 
compare with FEM results, the natural frequencies of Foothill Boulevard Undercrossing with the 
rigid deck assumption are calculated and shown in Table 1. The comparison of results indicates 
that the presented method is capable to obtain the dynamic characteristics of the skewed bridge.  
 On the other hand, it is seen that for both analytical and FEM of Foothill Boulevard 
Undercrossing the second mode shape is pure longitudinal translation. To explain this response, 
with note to above values of the skewed bridge it is seen that KN=KT and as a result ωN=ωT. 
Therefore considering Eq.(7) and Eq.(9), for this bridge the uncoupled cross circular frequency 
is equal to zero (ωXY=0). Hence, neglecting the shear stiffness of the elastomer bearings 
(ΨX=ΨY≈0), Eq.(12) and its solution can be written as follows: 
 



Figure 4. FEM of Foothill Boulevard     
Undercrossing - SAP 2000. 

Figure 5. Analytical model of Foothill 
Boulevard Undercrossing   

 
Table 1. The natural frequencies of the Analytical model and FEM 

Mode Analytical Model 
(rad/sec) 

FEM 
(rad/sec) Interpretation of the mode shapes 

1 st 12.265 12.280 In-plan rotation coupled with translation parallel to Y direction 
2 nd 18.491 17.834 Translation parallel to X direction 
3 rd 18.728 18.061 Translation parallel to Y direction coupled with in-plan rotation 
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Where  ΩN=ωθ/ωN and λ2=( λx

2+ λy
2+1)/2. The natural circular frequencies of Foothill Boulevard 

Undercrossing are generally stated by Eq.(14). It is seen that for this case the skewed bridge has 
a translational independent mode and two coupled modes. The ratio of the natural circular 
frequencies to ωN (ω/ωN) versus ΩN for different values of λ2 are simultaneously plotted in Fig. 
6. Note that as in practice the value of λ2 is limited such that 0.5≤λ2<1. As shown the 
translational independent mode lies between the two coupled modes, hence, this mode always is 
the second mode. Also, it is observed that for the little values of ΩN, the first mode approaches to 
the rotational mode (in the direction of the arrow) and for large values of ΩN has a trend to the 
translational mode. Behavior of the third mode is reverse. For this bridge λ2=0.501 and 
ΩN=0.462. Hence, the mode shapes of the second mode are obtained as follows: 
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As can be seen the second mode is a pure longitudinal translation mode. Therefore, it is obvious 
that the analytical model acceptably demonstrates the dynamic behavior of the skewed bridge.   
  Then, the seismic responses of the bridge include the torsional moment at the columns 
base, shear forces in the N and T direction and displacement of the corner nodes of the deck in 
the X and Y direction are calculated and shown in Fig. 7, Fig 8 and Fig 9, respectively. 



Figure 7. The torsional moments of the 
columns   

Figure 6. The natural circular frequencies of 
Foothill Boulevard Undercrossing   

 

(a) (b) 
Figure 8. The shear forces of the columns, (a)N direction (b)T direction 

 

(b) (a) 
Figure 8. The displacement of the corner nodes, (a)X direction (b)Y direction 

 
The results show that the model is satisfactory to determine the general dynamic features of the 
skewed bridge with continuous rigid deck.  
    

Conclusions 
 

 A generalized hand-method was presented for dynamic analysis of the highway skewed 
bridges with continuous deck. In the presented model it was assumed that the deck is rigid in-



plane and the rotational effect of ground motion was neglected. The method was verified using a 
finite element model subjected to earthquake excitation. It was shown that the results from the 
proposed method as an approximate method in the preliminary analysis are in good agreement 
with the finite element model as a reliable method in the final stage of analysis. Since in practice, 
using the presented formulas is more available  than a FE program, this approximate method is 
suggested to bridge engineers for seismic calculations of highway skewed bridges in preliminary 
phase of a seismic design process. In addition, the preliminary values of method can help 
identify the unknown errors occur during FE modeling of the structure in commercial package 
programs. 
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