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ABSTRACT 
 
 Structural collapse during earthquakes causes massive loss of economy and 

human lives. For protecting structures from collapse, accurate estimation of 
collapse intensity and collapse fragility is very important. To estimate the collapse 
intensity of a structure, incremental dynamic analysis (IDA) can be used. The 
IDA of practical structures, however, is computationally extremely demanding 
since the IDA requires repeated nonlinear response history analyses (RHA) of a 
structure for an ensemble of ground motions. This study develops a simple and 
accurate procedure for estimating the collapse intensity and collapse fragility of a 
structure using modal pushover analyses (MPA) and an empirical equation of 
collapse strength ratios.  

 
Introduction 

 
 Prediction of collapse potential of buildings is an important issue in earthquake 
engineering. Incremental Dynamic Analysis (IDA) (Vamvatsikos, 2002) can be used to estimate 
collapse potential of the buildings. Since the IDA requires nonlinear response history analysis 
(RHA) of the structure for an ensemble of ground motions, each scaled to many intensity levels, 
selected to cover a wide range of structural response all the way from elastic behavior to global 
dynamic instability, the IDA is computationally extremely demanding for practical structures.  
 This paper develops a Modal Pushover Analysis (MPA) based approximate procedure to 
quantify the collapse potential of buildings. The MPA (Chopra and Goel, 2002), an approximate 
analysis procedure rooted in structural dynamics theory (Chopra, 2007), has been utilized to 
estimate seismic demands instead of nonlinear RHA. The accuracy of MPA in estimating IDA 
curves was demonstrated in Han and Chopra (2006).  This paper explores the potential of MPA 
in investigating the collapse of buildings. Collapse here is synonymous with dynamic sideway 
instability in one or several stories of the structural system. For verifying the accuracy of the 
proposed procedure using MPA, collapse intensity and collapse fragility curves for two steel 
moment frames are estimated using exact IDA and the proposed approximate method.  
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Collapse intensity and collapse fragility curves  
 
 The ground motion intensity that causes collapse of a building is defined as collapse 
intensity ( cA ). IDA can be used to estimate cA . From the IDA, one IDA curve is obtained under 
one ground motion, which is a plot of ground motion intensity against a seismic demand 
parameter. In this study, the ground motion intensity is characterized by ( )1 1,A T ζ , the spectral 
pseudo-acceleration corresponding to the period( 1T ) and damping ratio ( 1ζ )of the first-mode of 
elastic vibration, and the demand parameter is represented by maximum over all stories of the 
peak inter-story drift ratio ( maxθ ), defined as the story drift divided by the story height.  
 Figure 1(a) shows the IDA curves for the SAC-Los Angeles 9-story building (Gupta and 
Krawinkler, 1999) for an ensemble of 20 ground motions (Vamvatsikos and Cornell, 2004). 
Calculated from these data, the 16, 50, and 84% fractile values of the intensity measure (IM) for 
a given maxθ  are presented in Figure 1(a). Global dynamic instability is identified by the vertical 
segment of the IDA curve, where the seismic demand increases greatly with the slightest 
increase in ground motion intensity. Adopting this terminology, the collapse intensity value, Ac, 
of the IM is identified by solid circles for individual ground motions in Figure 1(a) and for the 
fractile values for the ground motion ensemble in Figure 1(a).  
 Following Zareian and Krawinkler (2007), the “collapse fragility curve” is defined as the 
cumulative distribution function, assuming a lognormal distribution, of the Ac values for the 
ground motions in the ensemble considered. Figure 1 (b) shows collapse fragilities using 20 

cA marked in Fig. 1(a) , together with their lognormal distribution calculated from the Ac data.  
 

IDA curves of model buildings 
 
 Two model buildings with rectangular plan are considered and used as model buildings: 
9- and 20-story buildings (Gupta and Krawinkler, 1999). Here, the lateral resistance for these 
buildings is provided by special steel moment-resisting frames (SMRF) along the plan perimeter; 
the N-S exterior frames of the two buildings are used as examples. The frame is idealized by the 
M1 model, a basic centerline model in which size, stiffness, and strength of the panel zone are 
not included (Gupta and Krawinkler, 1999). P −Δ  effect due to gravity loads are included in the 
analysis, but the strength and stiffness deterioration of structural members are not considered.  
 The first three natural periods of the structures vibrating within the elastic range are:  
2.34, 0.88, and 0.50 sec for the 9-story building; and 3.98, 1.36, and 0.79 sec for the 20-story 
building. The damping matrix is constructed as o 1a ac = k + m , where k  and m  are the initial 
elastic stiffness matrix and mass matrix, respectively, and the constants 0a  and 1a  are 
determined from specified damping ratios (ζ ) at two periods. For the 9 story building, damping 
ratios of 2% are specified at the first- and fifth mode periods, whereas for the 20-story building, 
damping ratios of 2% are specified at the first-mode period and at 0.2 sec.  
 Figure 2 shows the 1st mode pushover curve for each of the two buildings.  It is idealized 
by the strength limited bilinear model (Ibarra et al., 2005), shown to be appropriate to represent 
the behavior of moment resisting steel frame buildings (Han and Chopra, 2006). Table 
1summarizes the properties of the hysteretic model for the 1st mode pushover curve for the two 
buildings. The details of strength limited bilinear model can be found in Ibarra et al. (2005). 



 An ensemble of 20 ground motions was selected. Listed in Vamvatsikos and Cornell, 
(2004), these motions were recorded on firm soil, during three earthquakes of M 6.5-6.9 (Loma 
Prieta, 1989; Superstition Hills, 1987; and Imperial Valley, 1979) at distances ranging from 15 to 
32 km.  
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Figure 1  (a) individual IDA curves and 16%, 50%, and 84% fractile IDA curves (collapse intens

ity is denoted by solid circles); (b)  Collapse fragility curve for SAC LA 9-story building: 
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Figure 2. First-mode static pushover curves and their idealization for two buildings: (a) 9-story 

building; and (b) 20-story building. 
 
 The dynamic response of each frame to each of the 20 ground motions scaled to the 
selected intensity A (T1, 2%) was determined by two procedures: nonlinear RHA and MPA. The 
16%, 50%, and 84% fractile values of A (T1, 2%) for a given maxθ were computed, and plotted 
against maxθ . The MPA procedure provides a computationally efficient, although approximate, 
alternative to nonlinear RHA. The MPA procedure is available in a convenient step-by step form 
(Chopra and Goel, 2002). In applying MPA to obtain IDA curves for all fractiles, an nth-mode 
pushover analysis of the structure is implemented only once. The resulting database provides all 
the response information needed to estimate seismic demands due to any ground motion scaled 
to any intensity level. The “modal” response is extracted from this database at the roof 
displacement rnu  due to the selected ground motion at the selected intensity level.  
 
 



Table 1. Properties of first-mode SDF system 
Property parameters 9-story 20-story 

1T  2.34 sec 3.98 sec 

sα  0.03 0.04 

cμ  4.40 2.25 

cα  -0.15 -0.25 

yA  0.18 g 0.09 g 
 
 

Accuracy of MPA-Estimate of Collapse Fragility Curve 
 
 Figure 3 compares the MPA-based approximate IDA curves, including contributions of a 
variable number of modes, and the exact IDA curves for 9- and 20-story buildings.  Figure 4 
shows the ratio of approximate collapse intensity, Ac obtained from the MPA-IDA to Ac obtained 
from exact IDA using nonlinear RHA of the MDF systems. This plot permits three observations: 
(1) the higher mode contributions are significant in determining the IM corresponding to smaller 
values of demand; (2) the first mode alone is sufficient in the MPA-based approximate procedure 
to determine the IM corresponding to the larger values of demand; and (3) the MPA-based 
approximate value of the IM becomes increasingly accurate at larger values of demand. The last 
observation implies that the collapse intensity, Ac, and hence the collapse fragility curve, can be 
determined accurately by the MPA-based approximate IDA by including only the first vibration 
mode. Higher modes of vibration have essentially no influence on the approximate value of Ac, 
and the one-mode value is within 8% of the exact value.  
 Figure 5 presents the cumulative distribution function (CDF), ( )cF A , determined by 
fitting a lognormal distribution to the data of 20 values of Ac, determined by two methods: 
nonlinear RHA based exact analysis, and MPA based approximate analysis including only the 
first mode. The influence of higher vibration modes on the collapse fragility curve is seen to be 
negligible, and one mode alone is adequate to estimate the collapse fragility curve. 
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Figure 3. 16%, 50%, and 84% fractile IDA curves from MPA based IDA, versus exact IDA  
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Figure 4. Ratio of approximate and exact values of IM, ( )1, 2%A T   
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Figure 5. Collapse fragility curves determined by MPA-based IDA versus exact IDA  
 

Collapse fragility curves for SDF systems 
 
 To encompass the full range of response from elastic to collapse to determine the 
collapse intensity of the SDF system, this MPA-based approximate IDA would require a series 
of nonlinear RHA of the first-mode inelastic SDF system subjected to each of the ground 
motions scaled to several levels of intensity. For practical application, we avoid such nonlinear 
RHA by developing empirical equations to estimate the desired intensity for strength-limited 
bilinear systems.  
 
Collapse Intensity 
 The ground motion intensity required to cause collapse of SDF systems can also be 
determined by IDA. As mentioned earlier, an IDA curve is a plot of the ground motion intensity, 
characterized by, say, ( ),nA T ζ , versus a demand parameter, say, the peak deformation of the 
system. Such an IDA curve is presented in Figure 6(a) for three strength-limited bilinear SDF 
systems. Dynamic instability is identified by the vertical segment of the IDA curves, where the 
demand increases greatly with the slightest increase in ground motion intensity. The collapse 
intensity, cA , is identified by a solid circle (Figure 6); also shown for reference is the peak 
deformation ou  of the corresponding linear system and the yield strength yA  of the nonlinear 
system.  
 Figure 6(b) shows the IDA curves of Figure 6(a) re-plotted using normalized scales: the 



vertical axis is now the inelastic deformation ratio, defined as the ratio of peak deformation mu  
to peak deformation 0u of the corresponding linear system; the horizontal axis plots the strength 
ratio o yR f f= , where yf is the yield strength of the system and ( )1,5%of mA T=  is the  minimum 

strength required for the system to remain elastic. The strength ratio, cR , at which results are 
presented for three different strength-limited bilinear systems, all with 0.5 secnT = and the same 
slopes sα  and cα of the force-deformation relation but different values of the ductility coefficient 

cμ , is referred to as the collapse strength ratio: c c yR m A f= .  
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Figure 6. Collapse intensity of excitation: (a) ( )1,5%cA T ; and (b) collapse strength ratio cR . 

 
Empirical Equations for Median and Dispersion of cR  
 To avoid the large number of nonlinear RHA of SDF systems for each ground motion 
required to determine the collapse strength ratio, cR , an empirical equation for cR  is available 
for bilinear systems (Miranda and Akkar, 2003). Developed herein for strength-limited bilinear 
system with 5% damping, the empirical equation was determined by regression analysis of the 
database of cR  values developed by IDA of 1200 ( )20 5 3 4 1 1= × × × × ×  SDF systems, covering 
the range of parameters listed in Table 2, implemented for 240 ground motions; thus the database 
included 288,000 ( )1200 240= ×  values of cR . The basis of an earlier study (Ruiz and Miranda, 
2005), included are 80 ground motions recorded on three NEHRP site classes B, C, and D, 
leading to a total of 240 ground motions recorded during earthquakes with magnitudes ranging 
from 5.8 to 7.7. Because CR  depends on five parameters ( nT ,ζ , Sα , Cα , and Cμ ) and their 
influence on CR  is inter-related with the other parameters, it was difficult to choose a functional 
form of CR . It was selected by trial and error and the equation parameters were determined by 
regression analysis of the exact data from nonlinear RHA, resulting in the following equation for 
the median value of CR . For systems with 5% damping:  

( ) ( )( ) 0.03 0.03ln2.5 1
5% 50%

1 1 0.38
b

c n nn
T TT a

c c c cR e
μ

ζ μ μ α
− + −− −

=
⎡ ⎤ = + − −
⎣ ⎦

  (1) 

wherein coefficients a and b are presented in Table 3 for selected values of αs ; these parameter 
values may be determined by interpolation for other values of αs .  



 For any other value of damping ratio ζ , cR  is estimated from its value for 5%-damped 
systems as follows:  

( ) ( ) 5%ζζ ζ ==c cR C R   (2) 

 Regression analysis of the database of its exact values determined by IDA of 4800 
( )20 5 3 4 4 1= × × × × ×  SDF systems (Table 2) and 240 ground motions, resulted in the empirical 
equation:  

( ) 0.260.38 0.44
0.07 ln 0.201

n c c
C

T
ζ

ζ
α μ− −

⎧ ⎫⎡ ⎤+⎪ ⎪⎢ ⎥= −⎨ ⎬
⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

  (3) 

 Regression analysis of the database of 1,152,000 values of cR  led to an empirical 
equation for the dispersion measure:  

( )
1.12

0.03 0.29
ln 0.05 0.28 0.36

0.04 0.140.22 c
c

c
R c

nT
μ μσ α

ζ ζ
−⎡ ⎤−

= − +⎢ ⎥
⋅⎢ ⎥⎣ ⎦

   (4) 

 An overall test of the accuracy of the proposed empirical equations is presented in Figure 
7, wherein estimated and exact values of 16, 50, and 84% fractiles of cR  are presented. The 
estimated values are determined from empirical Eqs. (1)-(4); and the exact values come from 
exact IDAs. This comparison indicates that the empirical equations provide a satisfactory 
estimate of cR . The agreement is better with the 16% and 50% fractile data and deteriorates for 
the 84% data.  
 
Table 2. System parameter values selected for developing empirical equations for .cR  

Parameters Range Number of Values 
nT  0.2 ~ 4.0 ( nTΔ = 0.2) 20 
sα  0.00, 0.03, 0.05, 0.10, 0.20 5 
cα  -0.1, -0.3, -0.5 3 
cμ  1, 2, 4, 6 4 
ζ  2, 5, 10, 20 % 4 

rf  0 1 
 
Table 3. Numerical values for coefficients a and b in Eq. (1) for different values of sα   

Coefficients 
Strain-hardening stiffness ratio, sα  

0.00 0.03 0.05 0.1 0.2 
a 0.00 0.30 0.38 0.65 1.57 
b 1.09 0.85 0.61 0.51 1.07 
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Estimating collapse fragility curves FOR MDF systems 
 
 In an earlier section, the collapse fragility curve for a building was determined by IDA of 
the structure for 20 ground motions. Against this exact curve, we compared the approximate 
results determined by MPA-based approximate IDA, considering only the first mode of 
vibration. The first-mode pushover curve is converted to the force-deformation curve for SDF 
systems, which is idealized as a strength-limited bilinear system by established equations 
(Chopra, 2007; Chapter 19). The pseudo-acceleration,

 yA , associated with the yield-strength, 

yf , of the SDF system and the system parameters are presented in Table 1. Corresponding to 

these properties, the median value of collapse strength ratio cR  is determined from Eqs. (1) and 
(2), and the value of ln cAσ  from Eq. (4); because yA  is assumed to be a deterministic quantity, 
not a random variable, ln lnc cA Rσ σ= .  

 The collapse intensity cA  for the first-mode SDF system is determined from =c c yA R A . 

Using this median value (50%) of cA  and ln cAσ and assuming a lognormal distribution, 

approximate values of the 16 and 84% fractile cA  are computed as median cA times e δm where 
dispersion δ  is ln cAσ ; these are presented in Table 4 where they are compared with the data 
determined by IDA of the structure.  
 Figure 8 shows approximate and exact fragility curves assuming lognormal distributions 
with approximate median cA  and ln cAσ   calculated by using empirical Eqs. (1)-(4), and with 

exact median cA  and ln cAσ  determined by exact IDA for 20 ground motions, respectively. 
Clearly, the approximate results are quite accurate. The accuracy of the MPA-based approximate 
method is excellent in estimating the collapse fragility curves and the 16, 50, and 84% fractile 
values of cA  for a range of building heights; the accuracy deteriorates slightly for the 20-story 
building, presumably because higher modes contribute significantly to its response.  
 The MPA based approximate procedure, which provides good estimates of ground 
motion intensity necessary to cause collapse of a building, requires a small fraction of the 



computational effort compared to that required in the “exact” procedure that uses nonlinear RHA 
to compute demands. If a Pentium 4 processor with 3.0 GHz CPU and DDR 2GB RAM is used, 
the computer time for analysis of one frame of the SAC Los Angeles 9 story building is reduced 
from 3 hours for the exact result to only 2 minutes for the approximate procedure. Thus, a fast 
estimate of the collapse fragility curves for multistory buildings is achieved at only a small loss 
in accuracy.  
 
Table 4. Exact and approximate values of 16, 50, and 84% fractile values of cA (units of g).  

Building 16% 50% 84% 
Exact Approximate Exact Approximate Exact Approximate 

9-story 0.970 1.018 1.507 1.522 2.341 2.273 
20-story 0.283 0.303 0.425 0.429 0.638 0.606 
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Figure 8. Collapse fragility curves determined by two methods: (1) one-mode MPA-based IDA 
and empirical equations for cR  for SDF systems, and (2) nonlinear RHA-based IDA for two 
buildings.  
 

CONCLUSIONS 
 
 This study proposes an approximate method for estimating collapse intensity and 
collapse fragility of MDF systems. This study shows that only the first mode of vibration of a 
structure needs to be considered in an MPA-based approximate method to determine the ground 
motion intensity, cA , necessary to cause collapse of a building. Thus the collapse fragility curve 
can be determined by IDA of the first-mode inelastic SDF system derived by a first-mode 
pushover analysis of the building. In the proposed method, empirical equation of  cR is used 
which is proposed to avoid the series of nonlinear RHA of this SDF system subjected to each 
ground motion scaled to several intensity levels, empirical equations have been developed to 
determine the collapse strength ratio, cR . These equations were developed for the strength 
limited bilinear model. Results for 6-, 9-, and 20-story steel SMRF buildings demonstrated that a 
one-mode MPA-based approximate method combined with the empirical equations for cR  for 
SDF systems estimates collapse fragility curves that are highly accurate. Estimating collapse 
fragility of the structure by MPA leads to a highly efficient procedure. In one of the examples 
considered, the MPA-based approximate method required a small fraction (roughly 1%) of the 



computational effort required in the “exact” procedure.  
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