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ABSTRACT 
 

 This study is aimed to predict the ultimate situation of bridges with or without 

unseating prevention devices through numerical analysis. In the past extreme 

earthquakes, a number of bridges suffered damage with unseating of the 

superstructures. Therefore, it is full of curiosity that how large earthquake will 

cause a bridge to collapse and how the ultimate state will be. It is extremely 

difficult to conduct a shaking table test by using a proto-model, especially for 

multi-span or long-span bridges. The Vector Form Intrinsic Finite Element 

(VFIFE) is superior in managing the engineering problems with material 

nonlinearity, discontinuity, large deformation, large displacement and arbitrary 

rigid body motions of deformable bodies. In this study the VFIFE is thus selected 

to be the analysis method. Once reaching the ultimate state, a bridge undergoes 

progressive failure, fragmentation and collapse. Structural elements enter 

nonlinear material range and/or exhibit large geometry nonlinearity even rigid 

body motion. The analysis methods in VFIFE for sliding of structures and fracture 

of elements are herein introduced to predict the collapse mechanism of bridges. 

Three types of bridges, a six-span simply-supported bridge, a continuous-span 

bridge with hinge and roller bearings and a continuous-span bridge with high-

damping-rubber isolators, are analyzed. The input ground motion was recorded at 

JR Takatori station in 1995 Japan Kobe earthquake. The ground acceleration 

varies from 100% to 300% at an increment of 10%. Through numerical simulation 

of three bridges with or without unseating prevention devices, the ultimate states 

are demonstrated and compared. The results show that the unseating prevention 

devices do not increase the safety of the studied bridges as expected. It is 

interesting to observe that the simply-supported bridge suffers unseating of the 

superstructure under much lower ground motion than the continuous-span bridge 

with rigid bearings. The continuous-span isolated bridge suffers unseating under 

lower ground motion than the simply-supported bridge. Also, the results confirm 

that the VFIFE is a powerful computation method to simulate the failure 

mechanism of devices and structural elements so as to successfully predict the 

ultimate states of bridges. 
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Introduction 

 

In the past extreme earthquakes, such as 1995 Japan Kobe earthquake and 1999 Taiwan 

Chi-Chi earthquake, a number of bridges suffered damage with unseating of superstructures. 

Whenever unseating failure occurs, the importance of unseating prevention strategy is 

emphasized repeatedly (Kawashima and shoji 2000). Lately, modern bridge seismic design has 

been developed toward the seismic performance design on entire bridges as well as components 

thereof. Unseating prevention is the main requirement for the performance of safety. It is full of 

curiosity that if the unseating prevention devices are effective, how large earthquake will cause a 

bridge to collapse and how the ultimate state will be. It is quite difficult to conduct a shaking 

table test by using a proto-model, especially for multi-span or long-span bridges. However, 

understanding the ultimate performance of entire bridges and their components, such as bearings, 

unseating prevention devices, columns, shall be favorable to verify the achievement of 

performance goal. This study is aimed to predict the ultimate situation of bridges with or without 

unseating prevention devices through numerical analysis. A new nonlinear structural dynamic 

analysis method is used to simulate the dynamic behavior of bridges under large earthquakes. 

The Vector Form Intrinsic Finite Element (VFIFE), a new computational method 

developed by (Ting et al. 2004), is superior in managing the engineering problems with material 

nonlinearity, discontinuity, large deformation, large displacement and arbitrary rigid body 

motions of deformable bodies. The VFIFE is thus selected to be the analysis method in this study. 

Since the VFIFE is still in its infant stage, there are still numbers of elements and functions 

needed to be constructed. Once reaching the ultimate state, a bridge undergoes progressive failure, 

fragmentation and collapse. Structural elements enter nonlinear material range and/or exhibit 

large geometry nonlinearity even rigid body motion. The analysis methods for sliding of 

structures and fracture of elements are herein introduced to predict the collapse mechanism of 

bridges. Three types of bridges, a six-span simply-supported bridge, a continuous-span bridge 

with hinge and roller bearings and a continuous-span bridge with high-damping-rubber isolators, 

are analyzed. Through numerical simulation of three bridges with or without unseating 

prevention devices, the ultimate states are demonstrated and compared. Some interesting results 

are observed. 

 

Vector Form Intrinsic Finite Element 

 

The Vector Form Intrinsic Finite Element has been developed based on theory of physics 

mainly to simulate failure response of a structural system due to applied loads. The first step in 

VFIFE analysis is to construct a discrete model for a continuous structure by using a lumped-

mass idealization. It is noted that all lumped masses are connected by deformable elements 

without mass. Applying Newton’s Second Law of Motion, the equations of motion are 

established at each mass or so-called node for all degrees of freedoms. Assume that a structural 

system consists of a finite number of particles. A particle designated as   has a mass 


M and a 

displacement ( )td  at time t . The equation of motion for particle is  

 

( ) ( ) ( )t t t    M d P f   (1) 

 

where 


P  is the applied force or equivalent force acting on the particle; 


f is the total resistance 

force exerted by all the elements connecting with the particle, or the internal resultant force. Each 



element without mass is in static equilibrium. 

Since the failure progress of structures involves changes in material properties and 

structural configuration, discrete time domain analysis is essential to solve the equation of 

motion, Eq. 1. In calculating the internal forces, a set of deformation coordinates is defined for 

each element and for each time increment. Compared to the traditional finite elements, the 

feature of VFIFE is the calculation of rigid body motion and deformation of elements through the 

deformation coordinates in each time increment. By doing so, VFIFE can deal with large 

displacement, deformation and rigid body motion simultaneously. 

For multi-degree-of-freedom systems, it is not necessary to assemble the global property 

matrices of structures in VFIFE analysis, i.e. matrix algebraic operation is waived. In stead, only 

scalar calculation is needed for each particle. The central difference method, an explicit time 

integration method, is adopted to solve the equation of motion, Eq. 1. 

 

Simulation of Ultimate States 

 

Bridges may undergo nonlinear behavior even structural failure when subjected to 

extreme earthquakes. In the past large earthquakes, a number of bridges suffered deck unseating, 

which is high nonlinearity along with rigid body motion. To simulate the collapse mechanism of 

bridges, the failure mechanism of major bridge components should be taken into account. 

The studied failure components are hinge bearings, high-damping-rubber isolators, 

unseating prevention devices and plastic hinges of decks and columns. Firstly, both bearings, 

hinge bearings and isolators, are idealized as a linear model and a bilinear model, respectively. 

Assume that the bearings fracture as the deformation reaches rupture deformation. Once the 

bearing breaks, there is no restoring shear force between the superstructure and column. In stead, 

the friction force acts at the interfaces. When the relative displacement between superstructure 

and column exceeds the unseating prevention length, the superstructure will lose the supporting 

force provided by the column and fall down from the column due to the gravity force. The 

failure of isolators represents a typical failure mechanism completing material linear and 

nonlinear hysteretic behavior, fracture, and sliding of structures. The writers (Lee et al. 2008) 

have developed the nonlinear elements in VFIFE in the previous study. This paper herein 

introduces the analytical methods for sliding structures and fracture of elements in VFIFE. 

 

Sliding of Structures 

 

After the bearing ruptures, the interface between the superstructure and the column turns 

to a sliding surface if the relative displacement between the superstructure and the column is still 

within the unseating prevention length. The motion on the sliding surface can be separated into 

stick and slip phases. When the friction force is smaller than the maximum static friction force, 

there is no relative motion in the interface, i.e. in stick phase. Once the friction force overcomes 

the maximum static friction force, relative movement starts in the interface and the friction force 

converts to dynamic friction force, i.e. in slip phase. In this study, assume that the maximum 

static friction force is equal to the dynamic friction force, and the dynamic friction coefficient 

remains constant during sliding. 

In the calculation process of VFIFE, the material properties and structural configuration 

are assumed to be unchangeable in each time increment. Therefore, the interface should be in 

either stick phase or slip phase during each incremental time. Before solving the response at next 



time step 1i  , the condition at the interface must be determined. In this study shear-balance 

procedure, which was proposed by Wang et al. (2001) for analyzing sliding structures by state-

space approach, is used to judge which phase the interface is in. 

The first step is to calculate the friction force in the interface on assumption of stick phase. 

It is noted that the relative displacement is null in stick phase. The interface is in stick phase if 

the calculated friction force is less than the dynamic friction force while it is in slip phase if the 

calculated friction force is equal or larger than the dynamic friction force. 

Figure 1 illustrates the motion of the superstructure with mass p
M  and the column with 

b
M  at time step i  and 1i  . The equations of motion for the two masses in the central difference 

equations are 

 

1
ˆ ˆp p p

i i Fi  K d P f
 

 (2) 

1
ˆ ˆb b b

i i Fi  K d P f
 

 (3) 

 

where ˆ ˆ,p p

iK P  are the effective stiffness and force, respectively; Fif is designated the friction 

force in the interface. If the interface is in stick phase, the relative displacement p b

i i i u d d  
between the superstructure and the column at time step i  is the same as the relative displacement 

1 1 1

p b

i i i   u d d  at time step 1i  . 

 

1 1

p b p b

i i i i   d d d d
 

 (4) 

 

Rearranging and substituting Eqs. 2 and 3 into Eq. 4, the calculated friction force Fif  is 

obtained as 
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b p p b p b p b

i i i i

Fi p b

  




K P K P K K u u
f

K K


 

 (5) 

 

If the calculated friction force Fif  is less than the dynamic friction force, the assumption 

of stick phase is true and the calculated friction force can be used in the next time increment, i.e. 

Fi Fif f . Otherwise, the interface is in slip phase. The friction force Fif must be substituted by 

dynamic friction force N , i.e. Fi Nf . The above can be summarized as 
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Figure 1.  The motion of the superstructure and the column 
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Fracture of Elements 
 

The first design principle of isolated bridges is the appropriate utilization of isolators and 

dampers to shift the main periods of vibration and increase the energy-dissipation capacity of the 

structures (Priestley et al. 1996). High damping rubber bearings and lead-rubber bearings, which 

have both the functions, are commonly utilized. Both bearings can be idealized by a bilinear 

model. In addition, it has been shown in the past study that the columns of isolated bridges may 

exhibit nonlinear behavior under extreme earthquakes (Lee and Kawashima 2007). The bilinear 

model can also be used to idealize reinforced concrete columns and steel columns. It must be 

carefully managed in constructing the bilinear element of VFIFE for the loading, unloading and 

reloading paths. The unseating prevention devices are designed to provide the function against 

unseating. The unseating prevention devices are generally with non-working length before they 

are triggered to function. Therefore they are idealized as elements with a hook or/and a gap.  

All properties and configuration of elements are assumed to be unchangeable in each time 

interval 
1i i

t t t


   in VFIFE. The internal forces are calculated based on the element properties 

and configuration at the initial time
i

t . The deformation coordinates of elements are redefined at 

the beginning of each time step. Therefore, once an element undergoes nonlinear or 

discontinuous behavior, all changes are reflected at the beginning of next time step. 

In this study, the aforementioned elements are considered failure components. Assume 

that an element fractures as its deformation reaches rupture deformation. At the beginning of 

each time step it is checked where the element failures or not. Once the element meets the 

fracture condition, the element and its restoring forces are released from the system. 

 

Numerical Simulation 

 

Three types of bridges, a six-span simply-supported bridge, a continuous-span bridge 

with hinge and roller bearings and a continuous-span bridge with high-damping-rubber isolators, 

as shown in Fig 2, are analyzed. 

All bridges consist of  a six-span deck with a total length of 6@40 m = 240 m and a width 

of 12 m, which is supported by five reinforced concrete columns with a height of 12 m in each 

and two abutments, as shown in Fig. 3. The continuous-span isolated bridge is designed based on 

the Japan highway bridge design codes. In order to make comparison, the substructure and 

superstructure of the other bridges with rigid bearings are the same as the isolated bridge except 

for the bearing systems. The columns are idealized as a perfect elastoplastic model with a 

fracture ductility of 21.5 shown in Fig. 4(a). The isolators are idealized as a bilinear elastoplastic 

model with a fracture shear strain of 500% while the hinge bearings of the simply-supported 

bridge and the continuous bridge are idealized as a linear model with a fracture shear of 255 tf 

and 383 tf, respectively, as shown in Figs. 4(b) and 4(c). After bearings rupture, the dynamic 

friction coefficient at the interface is assumed to be 0.15. The friction coefficient of the roller 

bearings is assumed to be 0.1. 

Steel tendons are installed at each expansion joint as the unseating prevention devices. 

The tendons are simulated by a tension element with a yielding force of 839 kN, an ultimate  



force of 932 kN and a hook of 40 cm shown in Fig. 4(d). The pounding effect of two adjacent 

decks is also considered by using an element with a gap of 28 cm. The unseating prevention 

 

  

Figure 2.    (a) simple-supported bridges with rigid bearings (b) continues-span bridges with 

rigid bearings (c) isolated bridges  
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Figure 3.    (a) lateral view of superstructure (b) lateral view of column and (c) side view of  

column 
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length at each column and abutment is 96 cm. Two installation types of the unseating prevention 

devices located at the columns are studied. One type is the connection between two adjacent 

decks. The other is the connection between the deck and the cap beam. In simulation, the bridges 

are subjected to near-field ground motions recorded at JR Takatori station, in the 1995 Kobe, 

Japan earthquake. The ground acceleration is amplified from 100% to 300% at an increment of 

10%. 

Through numerical simulation of three bridges with or without unseating prevention 

devices, the ultimate states are demonstrated and compared. It is interesting to observe that the 

simply-supported bridge suffers unseating of the superstructure as the ground motion is amplified 

equal to and larger than 160% while the continuous-span bridge with rigid bearings do not unseat 

even under 260% ground motion. However the continuous-span isolated bridge suffers unseating 

when the ground motion is amplified equal and larger than 140%. Figures 5 through 8 depict the 

failure states of the isolated bridge under 140% ground motion and simply-supported bridge 

under 170% ground motion with or without unseating prevention devices at 5.6 sec and final 

condition, where the first characters B, C, D, R of the notions denote the bearing, column, deck 

and tendon, respectively. For the isolated bridge, the collapse is attributed to column failure 

because the fracture shear of isolators is larger than fracture lateral force of the columns. The 

collapse of the simply-supported bridge is due to insufficient unseating prevention length. The 

continuous-span bridge with rigid bearings performs better than the other bridges because a 

continuous deck has less possible unseating points and the hinge bearings fail earlier than the 

columns. The results show that the unseating prevention devices do not increase the safety of the 

studied bridges as expected. 

  

Figure 4.    Material property (a) column (b) isolator (c) hinge bearing (d) steel tendon 

(d)  (c)  

(b)  (a)  

f

u
4938 tf/m

938.22 tf/m

0.016
y

u 

M


1630734 tf-m/rad

0.00218
y

 

openu

1

23630.53 tf/m

openu

f

yf

u

f

u

90 tf

255 tf

251400 tf/m



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) at 5.0 sec 
4C

2D

5C

(b) at 20.0 sec 
C1 C2

D1

C4

D2

C5

C5 C4 

D2 

 C5 

Figure6.    Failure states of the isolated bridge with unseating prevention devices under 140% 

ground motion 

Figure5.   Failure states of the isolated bridge without unseating prevention devices under 140% 

ground motion 
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Figure 7.   Failure states of the simple-supported bridge without unseating prevention devices 

under 170% ground motion 
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Figure 8.   Failure states of the simple-supported bridge with unseating prevention devices under 

170% ground motion 
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Conclusions 
 

Since the VFIFE has the advantages in managing the engineering problems with material 

nonlinearity, discontinuity, large deformation, large displacement, arbitrary rigid body motions of 

deformable bodies and even fracture and collapse, it is adopted in this study to predict the 

ultimate states of bridges with and without unseating prevention devices under large earthquakes. 

Three types of bridges are analyzed under JR Takatori ground motion amplified from 100% to 

300%. The numerical simulation successfully predicts the failure process of the bridges under 

extreme earthquakes. The results show that the unseating prevention devices do not increase the 

safety of the studied bridges as expected. It is interesting to observe that the simply-supported 

bridge suffers unseating of the superstructure under much lower ground motion than the 

continuous-span bridge with rigid bearings. The continuous-span isolated bridge suffers 

unseating under lower ground motion than the simply-supported bridge. Also, the results confirm 

that the VFIFE is a powerful computation method to simulate the failure mechanism of devices 

and structural elements 
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