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ABSTRACT

This paper first investigates the appropriateness of the use of a uniform hazard
spectrum (UHS) along with an equivalent linearization technique as a design
spectrum to estimate the response of an inelastic oscillator.  There exists some
correlation among the spectral responses of elastic oscillators to a ground motion,
but such correlation is not considered in a UHS.   An approximation method is
proposed to estimate the probability distribution function of the response using
the probabilistic characteristics of an elastic response spectrum and Capacity-
Spectrum method, in which the inelastic response is estimated by finding the
intersection of the inelastic demand spectrum and the capacity spectrum.  The
accuracy of the proposed method is investigated using numerical examples.

Introduction

Predictors of seismic structural demands (such as inter-story drift angles) that are less time-
consuming than nonlinear dynamic analysis (NDA) have proven useful for structural performance
assessment and for design.  Several techniques have been proposed using the results of a nonlinear
static pushover analysis (e.g., Luco 2002; Chopra & Goel 2002; Yamanaka, et al 2003; Mori, et al,
2006).  These techniques often use the maximum response computed via NDA of the inelastic
oscillator that is “equivalent” to the original frame.  In practice, it is desirable to estimate the
response approximately via a simpler method such as a design response spectrum at the site and R-
factor or, a little more accurately, the spectrum and an equivalent linearization technique.

 In reliability-based seismic design of a structure, design spectra are being developed based
on the probabilistic approach, and a uniform hazard spectrum (UHS) is often used.  A UHS is
developed by plotting the response with the same (i.e. uniform) exceedance probability of a suit of
elastic oscillators with natural period different from one another, and accordingly, does not
represent any specific ground motion (Abrahamson 2006).  Although there exits some correlation
among the spectral responses of oscillators to a ground motion (e.g. Baker & Cornell 2006), such
correlation is not considered in a UHS.  Hence, it might not be suitable to use a UHS to estimate
the inelastic response via an equivalent linearization technique, in which the response at the
equivalent natural period is also used.   As it is implicitly assumed in a use of a UHS that the
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response of a suite of the elastic oscillators is perfectly correlated, the response would be overly
estimated when very rare event is considered.

This paper first investigates the appropriateness of the use of a UHS, i.e., the assumption
of the perfect correlation, along with an equivalent linearization technique as a design spectrum
to estimate the response of an inelastic oscillator.  The results are compared with those of Monte
Carlo simulation considering correlation among the responses of a suit of elastic oscillators with
natural period different from one another.  Then it proposes an approximation method to estimate
the probability distribution function (CDF) of the response of an inelastic oscillator via an
equivalent linearization technique using the probabilistic characteristics of an elastic response
spectrum.  In the Capacity-Spectrum method (Freeman 1978), which is employed in the current
Japanese seismic provisions, the inelastic response is estimated by finding the intersection of the
inelastic demand spectrum and the capacity spectrum.  When the uncertainty in the demand
spectrum is to be taken into account, the problem could be considered as a first-passage problem in
a standard normal stochastic process with a time-varying threshold.  An approximation method is
then proposed considering the probability that the demand spectrum is above the capacity
spectrum at two or three spectral periods including the elastic natural period of the oscillator.
The accuracy of the method is investigated using numerical examples.

Equivalent Linearization Technique and Capacity-Spectrum Method

In an equivalent linearization technique, the maximum displacement of an inelastic
oscillator with elastic natural period, 1T , and damping factor, 1h , to a ground motion is
approximated with the maximum displacement of an elastic oscillator with the equivalent natural
period, eqT , and the equivalent damping factor, eqh , to the ground motion as,

1 1( ) ( )I E
D D eq eqS T h S T h; ≈ ; (1)

in which ( )DS T h;  is the spectral displacement of an oscillator with natural period, T , and
damping factor, h , and the superscripts E  and I  represent the elastic response and inelastic
response, respectively.

Generally, eqT  and eqh  are estimated as the function of the maximum ductility factor of
the inelastic oscillator, µ , which is defined as the ratio of the maximum displacement to the
yield displacement. Several techniques have been proposed (eg., Iwan 1980, Shimazaki 1999),
and among them, the following eqT  and eqh  proposed by Shimazaki is considered in this paper.

1eqT T µ= ⋅ (2)
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Applying Capacity Spectrum method, the inelastic displacement can be estimated
graphically as the intersection of capacity spectrum and demand spectrum.  In order to take into
account the effect of eqh , the demand spectrum must be adjusted by multiplying damping
reduction factor ( )h eqF h .  Since ( )h eqF h is the function of the unknown value µ , it generally
requires iterative procedure.

On the contrary, the response can be estimated directly by considering the Demand and
Capacity spectra in an ordinal T - DS  coordinate rather than an DS - AS  coordinate as follows (see
Fig.1, Mori and Maruyama, 2007):

Divided by the yield displacement of the inelastic oscillator, the DS  axis can be
transformed linearly into the axis of the maximum ductility factor, µ .  The T  axis can also be
expressed in terms of µ , since eqT is a function of µ  as expressed by Eq.2.  Then the Capacity
Spectrum can be obtained as the one-to-one line in the µ -µ  coordinate.

The inelastic demand spectrum can be obtained as the product of the elastic demand
spectrum and a damping reduction factor, ( )h eqF h , in which eqh  is also a function of µ  (see
Eq.3).  Then, the maximum displacement of the inelastic oscillator is obtained as the intersection
(point A  in Fig.1) of the capacity spectrum and the inelastic demand spectrum
( ( ) ( )E

D eq eq h eqS T h F h; ⋅  in Fig.1).  Note that eqT  can also be obtained as the intersection of capacity
spectrum multiplied by 1/ ( )h eqF h  ( ( )g T  in Fig.1) and the elastic demand spectrum (point A′  in
Fig.1).  Then the maximum displacement can be evaluated using Eq.2.

Figure 1. Capacity-Spectrum Method in T - DS coordinate
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CDF of ( )I
DS T  by Monte Carlo Simulation

Probabilistic Model of Seismic Hazard

The basic information of seismic hazard considered in this paper is the probability
distribution of the maximum spectral displacement of an elastic oscillator in n  years, ( )E

DnS T h; ,
and auto-correlation function of the spectrum.  Such information can be obtained through a seismic
hazard analysis, which generally takes the following steps.

(1) Simulate the occurrence of earthquakes at the faults which could cause a strong
ground motion at a construction site for the next n  years.

(2) Evaluate the response spectrum at the site for each earthquake using attenuation
formula.  The variability and the auto-correlation functions of a response spectrum are
considered by multiplying an random variable with median equal to 1.0.

(3) Take the maximum response among the earthquakes at each natural period as the
maximum response of the sample of n  years.

(4) By repeating (1)-(3) many times obtain the probability distribution function and the
auto-correlation function of ( )E

DnS T h; .

It is assumed here that a response spectrum of a ground motion has the auto-correlation
functions of a response spectrum, ( )SK ξ , proposed by Baker and Cornell (2006) (see Fig.2) for
each ground motion.  It should be noted that although ( )SK ξ  is in general not a function of the
difference between two spectral periods, iT  and jT ; however, in most of the proposed models

including Baker and Cornell’s model it is only the function of ξ  = ( )log logi jT T 
 
 

− .

Figure 2. Auto-correlation function of response spectrum, ( )SK ξ
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( )g T  (see Fig.1) of an inelastic oscillator with the mass equal to unity and an elasto-plastic
backbone curve can be expressed as,

2
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in which yC  and yδ  are the yield base shear coefficient and the yield displacement of the
oscillator, respectively, and 9.8(m/s) is the gravity acceleration.  The following damping
reduction factor proposed by Kasai et al (2003) is used in this paper.
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CDF of ( )I
DS T  Using UHS

In order to investigate the appropriateness of the use of a UHS along with an equivalent
linearization technique, 8,000 samples of 50-year seismic activities and the response spectrum
for each ground motion at Nagoya, Japan are generated.  It is assumed that the random variable
described in Step (2) in the previous section is lognormally distributed with coefficient of
variation (c.o.v) equal to 0.5.  The statistics of the 50-year maximum spectral displacement of an
elastic oscillator with h = 0.05, 50 ( ; 0.05)E

DS T h = , is illustrated in Fig.3.  The auto-correlation
function of the 50-year maximum spectrum is also illustrated in Fig.2.  Note that the correlation
of the 50-year maximum response spectrum is lower than that of a ground motion.  This is
because of the possibility that one of the earthquakes could cause the 50-year maximum response
at one natural period while the other could cause the maximum response at the other natural
period.

The exceedance probability (complementary CDF) in n  years of the maximum
displacement of the inelastic oscillator is illustrated in Fig. 4 assuming that (a) the auto-
correlation model by Baker and Cornell (see Fig.2) and (b) the perfectly correlated model, which
corresponds to a UHS.  It is assumed that the damping factor and the yield base shear coefficient
of the inelastic oscillator equal 0.05 and 0.3, respectively and that the natural period equals 0.5,
1.0, 1.5, or 2.0 seconds.  The maximum displacement of the oscillator is estimated using
Capacity spectrum method in DT S−  coordinate for each of 8,000 samples of 50-year seismic



activities.  The maximum response is overly estimated using a UHS, and thus, the auto-
correlation of spectral response, ( )SK ξ , should be taken into account appropriately when the
equivalent linearization technique is applied for estimating the n -year maximum displacement
of an inelastic oscillator.

Figure 3. Statistics of 50-year maximum acceleration response spectrum

Figure 4. 50-year maximum displacement of inelastic oscillator

Approximation Method for CDF of ( )I
DS T

As discussed in the previous section, the maximum displacement of an inelastic oscillator
would be overly estimated using of a UHS along with equivalent linearization technique.
Although it can be estimated by Monte Carlo simulation, it requires quite a lot of computational
effort.
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 In the Capacity Spectrum method, the event that the equivalent natural period, eqT , is

longer than eqt  corresponds to the event that 50 ( ; )E
DS T h  is always above ( )g T  within the range

of ( )1 eqT t,  (the hatched area in Fig.5 (a)).

Figure 5. Schematic illustration of Capacity Spectrum method for standard normal stochastic
process

By transforming 50 ( ; )E
DS T h , which is assumed to be lognormally distributed based on the

hazard analysis, into standard normal stochastic process, ( )Y T , by Eq.7, the function ( )g T  and
the hatched area in Fig.4(a) is transformed to the function ( )a T  and the hatched area in T y−
coordinate in Fig.4(b), respectively.
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in which ( )50ln ( )E
DS T

µ  and ( )50ln ( )E
DS T

σ  are the mean and standard deviation of 50ln( ( ; ))E
DS T h ,

respectively.  The auto-correlation function of ( )Y T , ( )YK ξ , is expressed as (Der Kiureghian
and Liu, 1985),
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in which 50( )iSD TV  is the c.o.v. of the 50 ( ; )E
D iS T h .  Then the problem of estimating the probability

that the stochastic process 50 ( ; )E
DS T h  stays above the threshold ( )g T  within the range of

1 eqT t ,   can be considered as the first passage problem of a standard normal stochastic process
crossing the threshold ( )a T  downward.
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The first passage problem of a standard normal stationary stochastic process has been
well studied.  Most of the studies have been devoted to estimate the probability of rare events,
for which the threshold is relatively far from the T -coordinate.  However, as seen in Fig.5, in the
current problem the threshold crosses the T -coordinate, and the existing theories are not
applicable.  Here, a simple approximation method is proposed based on the probability that the
spectrum is above the threshold ( )a T  at 1T , eqt , and the geometrical mean of 1T  and eqt .

Consider two standard normal random variables X  and Y  with correlation coefficient ρ .
 Given 1Y y= , X  is a normal random variable with mean value 1X yµ ρ= ⋅  and standard

deviation 21Xσ ρ= − .   Then, given 1 1( )Y T y= , the conditional probability that the stochastic
process ( )Y T  is above the threshold ( )a T  at the natural period equal to eqt can be expressed as,

1, 1
1 12

1 1 1,

1 1

( )
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         0                             ;  ( )

eq eq

eq eq eq
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<
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in which ( )Φ is the standard normal probability distribution function and 1,eqρ  is the correlation

coefficient of 50 ( ; )E
D iS T h  at the natural periods 1T  and eqt .

By the theorem of total probability, the probability that ( )Y T  is above the threshold
( )a T  at the natural period equal to 1T  and eqt  can be expressed as,

        
1

1, 1
1 1 1 12( )
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( ) ( ) ( ) ( ) 1 ( )

1
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eq eq a T
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a t y
P Y T a T Y t a t y dy

ρ
φ

ρ

−∞
  − ⋅   ≥ ∩ ≥ = −Φ    −  

∫ (10)

in which ( )φ  is the standard normal probability density function.

In Eq.10, the possibility that ( )Y T  crosses the threshold ( )a T  downward within the
interval ( )1, eqT t  is not considered, and accordingly the response of an inelastic oscillator could
be overly estimated by this equation.  Here, the possibility that ( )Y T  is above the threshold

( )a T  at one more point within the interval ( )1 eqT t,  is considered.  As the auto-correlation

function of 50 ( ; )E
D iS T h  is only the function of ξ  = ( )log logi jT T 

 
 

−  (see Fig.2), the geometric

mean of 1T  and eqt  is selected as the third point.  Then the following semi-empirical formula is
proposed as an approximation method.
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∫ (11)

in which 1,mρ  is the correlation coefficient of the spectrum at natural periods 1T  and mt ,  and

1m eqt T t= ⋅ .   The probability distribution function of the maximum displacement of an inelastic
oscillator can be estimated using Eq.2 and Eq.11.

Accuracy of Proposed Method

Fig.6 illustrates the exceedance probability of the spectral displacement of an inelastic
oscillator with the elastic natural period, 1T , equal to (a) 0.5 sec., (b) 1.0 sec., (c) 1.5 sec., and (d)
2.0 sec., respectively, evaluated by Eq.10, Eq.11, and Monte Carlo simulation.  Eq.10 provides
overly pessimistic estimates of the response as expected.  On the contrary, Eq.11 provides
optimistic estimates.  Further investigation is required for more accurate estimates which would
exist between Eqs.10 and 11.

Figure 6. Maximum displacement of inelastic oscillator evaluated by the proposed method
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Conclusions

It is shown in this paper that the spectral displacement of an inelastic oscillator is overly
estimated with the use of a UHS along with equivalent linearization technique since the
correlation among spectral period is not considered in a UHS.  An approximation method is then
proposed to estimate the probability distribution function of the maximum response via an
equivalent linearization technique considering the probability that the demand spectrum is above
the capacity spectrum at two or three spectral periods including the elastic natural period of the
oscillator.  Using numerical example, it is demonstrated that the exceedance probability of
maximum displacement can be evaluated approximately by the proposed method.
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