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ABSTRACT 
 This paper introduces a constitutive material model of reinforcing steel bars in 

reinforced concrete (RC) columns. The model accounts for the restraining effect 
of transverse reinforcement on the bar buckling length and the stress at the onset 
of buckling. Once the bar buckles, the material model uses a strain decomposition 
approach to condense the bar rotational and transversal degrees of freedom and 
model the post-buckling softening behavior in terms of convenient axial stress 
and strain quantities. The model incorporates stiffness reduction upon strain 
reversal from a compression cycle in which bar buckling occurred, and a plastic 
strain-dependent damage index calibrated to impose hysteretic stress reduction 
and predict bar fracture. Due to the strain decomposition approach used, the bar 
buckling model has the advantage of flexibility to use an existing library of steel 
uniaxial material models as base. The model-predicted monotonic and cyclic axial 
responses of individual reinforcing steel bars compare well with published 
experiments. Finally, the proposed model is used successfully to model buckling 
in the longitudinal reinforcement of two RC bridge column models 
experimentally tested under combined axial and lateral loading. 

Introduction 
Reinforcing steel bars generally follow a linear-elastic response in tension up to a 

yielding strain. Then, nonlinear behavior characterized by elongation with little corresponding 
change in stress is typically observed, followed by hardening up to an ultimate stress, which is 
followed by softening and, eventually, fracture. In compression, however, geometric effects, i.e. 
bar slenderness (length to diameter ratio), usually lead to buckling of the bar before the ultimate 
stress. Elastic buckling can occur prior to yielding in the more slender bars, while inelastic 
buckling is observed for less slender bars. After buckling, bars exhibit a softening response with 
increased compressive strains, since the bar cross-sections in this regime are loaded eccentrically 
and compressive yielding occurs only on one side of the cross-section while the opposite side of 
the cross-section is subjected to tension. Many analytical models have been proposed in the 
literature, which vary in accuracy and complexity, from bilinear to multi-regime nonlinear for 
unbuckled bar behavior. 
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Buckling of longitudinal bars in compression is a geometric nonlinearity effect which 
causes the response to deviate from the theoretical (tensile) stress-strain law. As such, its 
accurate modeling is subject to an accurate balance of geometric and material stiffnesses. 
Analytical models for steel bar inelastic behavior which include explicitly nonlinear functions 
more accurately estimate a bar stiffness along the loading history than simple multi-linear 
models. This study uses the cyclic stress-strain model by (Menegotto and Pinto 1973), 
complemented by the work of (Chang and Mander 1994) for a better representation of the 
nonlinear monotonic behavior and the yield plateau.  

Experimental investigations were conducted on individual reinforcing bars by several 
researchers including (Monti and Nuti 1992), (Rodriguez et al. 1999), (Bayrak and Sheikh 2001), 
and (Dhakal and Maekawa 2002b). These experiments established monotonic and cyclic 
response data for bars with different strengths, slenderness ratios, and axial load eccentricities. 
These data led to a number of analytical models to predict the onset of bar buckling and describe 
post-buckling behavior. Several models, e.g. Rodriguez et al. (1999) assumes that the buckling 
length is known a-priori and equal to the  transverse tie spacing. Experimental observations from 
RC column tests demonstrate that bar buckling can occur over multiple transverse tie spacings. 
Therefore, a variable buckling length as well as the lateral restraining effect of these ties should 
be explicitly considered in predicting the buckling load. The study in (Dhakal and Maekawa 
2002a) explicitly considers the buckling of a bar laterally supported by discrete springs 
representing individual ties. This necessitates the use of iterative procedures to determine the 
critical number of ties and the corresponding critical stress, which is computationally demanding. 
Contrastingly, (Berry and Eberhard 2005) proposes a regression-based empirical expression for 
RC column lateral drift ratio at the onset of bar buckling for a given axial load level. The 
statistical analysis included in (Berry and Eberhard 2005) employs results from 40 tests of 
flexure-critical RC columns and results in a fit with 28% coefficient of variation. 

The post-buckling behavior of steel bars has been modeled based on one of two 
approaches. The first approach describes the behavior based on the average strain in the 
neighboring concrete. In this case, the material model is in effect a structural model of the 
reinforcing bar, and the model parameters need to be calibrated for the bar geometry. 
Justification for this average strain approach is presented in (Bayrak and Sheikh 2001), arguing 
that while the buckled bar loses its bond with the neighboring concrete, the assumption of equal 
average strain can be maintained at transverse tie locations at the ends of a buckled bar. Other 
published research works which follow the average strain approach include (Monti and Nuti 
1992), (Gomes and Appleton 1997), and (Attolico et al. 2000). The second approach deals 
directly with large-deformation strains and explicitly models non-uniform stress in the bar cross-
section. For example, (Dhakal and Maekawa 2002a, b) use a micro-analytical approach to 
determine the monotonic softening behavior of buckled bars using solid modeling. Based on 
simulations for a variety of bar geometry and strength configurations, this softening relationship 
is then parameterized using average strain quantities and included in a finite element (FE) code. 
These models use the stress-strain model in (Menegotto and Pinto 1973) as a starting point.  

The proposed constitutive model is composed of several components: the idealization of 
the bar and tie geometry into a uniaxial material framework; the estimation of critical buckling 
stress and corresponding buckling length; the prediction of monotonic post-buckling behavior 
using a strain decomposition; the prediction of cyclic behavior and reduced unloading stiffness 
of buckled bars; and hysteretic stress reduction, modeled as a low-cycle fatigue phenomenon. 



Geometric Setup of Laterally-Restrained Longitudinal Bar 
The geometric setup and free-body diagram of the buckling-prone longitudinal steel bar 

encased within a RC column is shown in Fig.1, idealized as a beam-column element supported 
on uniformly distributed springs. An energy-minimization approach is then used to determine the 
buckling length and the corresponding critical stress. It is assumed that buckling takes place in 
the perpendicular direction away from the column core in a bar of diameter bd  over a buckling 
length bL  spanning more than one transverse tie spacing ts , of effective stiffness tα  for each tie, 
that the concrete cover spalls prior to bar buckling and has no restraining effect, and that the bar 
rotation is restrained at the beginning and end of the buckling length. The figure shows the free-
body diagram of the buckled bar at equilibrium in a deformed configuration with buckling-
induced lateral displacement nδ  at mid-height. This results in bending moments as shown, in 
addition to the axial load P  satisfying equilibrium. The variation of P  along the buckling length 
is ignored because in the relevant case of post-yield buckling within a plastic hinge region, the 
stress along the bar in this region is nearly constant. The inclusion of this variation in the 
formulation requires an iterative solution of the critical buckling length instead of the closed-
form analytical expression derived later in Eq. (8). The lateral displacement ( )xy  along the 
reinforcing bar is assumed to follow an infinite series of harmonic shape function, 
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∞

=
−=

1
2cos12 

n
bn Lnxxy πδ  (1)

Moreover, the bar is assumed to have initial imperfection (deformed shape). A formula similar to 
Eq. (1) describes the initial deformed shape, with lateral displacement iδ  at mid-height. 

 

Figure 1. Geometry and free-body diagram of buckling-prone longitudinal bar 

Detecting the Onset of Buckling 
The elastic strain energy stored in the system due to the increase in axial load on the bar 

can be evaluated by algebraically adding the contributions from two terms. The first term is 
derived from the bending moment ( )xM  and curvature ( )xφ  along the buckling length bL , 
where ( ) ( )xJExM bs φ= , sE  is the bar elastic modulus, bJ  is the bar cross-section moment of 
inertia, and ( )xφ  is the second derivative of Eq. (1). The first term in the strain energy equation 
can be evaluated by making use of the orthogonality characteristic of trigonometric integrals as 
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where the explicit reference to functional dependence on location x  is dropped. . For inelastic 
increments where the current tangent modulus is stE , sE  is replaced by the reduced modulus rE  

( )2
4 stsstsr EEEEE +=  (3)

The second term in the strain energy equation is derived from the stretching in the 
uniform springs of linear stiffness ttt sαβ = . Noting that the stretch in a spring at a distance x  
is given by ( )xy , the second term in the strain energy equation evaluates to 
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Combining Eq. (2) and (4) leads to the following elastic strain energy eU∆ , 
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The external work done by P  is evaluated by computing the change (shortening) in the 
bar length L∆ . The updated length is evaluated by integration along the deformed shape and can 
be evaluated using first-order expansion, 
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Equations (5) and (6) are derived using elastic material properties. However, unless the 
transverse reinforcement spacing is severely inadequate, longitudinal bar buckling often takes 
place after yielding. This can be addressed using incremental forms of Eq. (5) and (6). Hence, 
equating the expressions for internal and external work increments, substituting current material 
properties, and setting 1=n  for the critical case, leads to the following non-monotonic 
relationship between the critical buckling load crP  and the buckling length crL , 
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which is minimized with respect to crL  to find the minimum critical load min,crP  and the 
corresponding critical length min,crL . 
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The constraint tcr sL ≥  verifies the assumption that the tie spacing is such that buckling 
takes place over multiple ties. In the case of wider tie spacing, tcr sL <  is inadmissible and 
buckling is assumed to take place between two adjacent ties ( tcr sL =min, ). In this case, the critical 
buckling load is corrected to exclude the effect of transverse tie stiffness, hence the discontinuity 
in Equation (9) at tcr sL =min, . For a bar with cross-section area bA , it is more convenient to 
evaluate a critical buckling stress (compression negative) at any stage during the analysis as 
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where   tbrcr JEγ β=  is a quantity that reflects the effect of inelasticity in the bar and transverse 
ties on the critical buckling stress. Inelasticity in the bar will reduce its stiffness modulus and 
buckling stress. Inelasticity or failure of the ties will result in a larger buckling length and a 
lower critical stress. Since inelasticity is a function of the imposed strain history, Eq. (10) 
therefore describes a critical surface in the bar stress-strain space which determines the onset of 
buckling. This critical surface is demonstrated in Fig.2 by evaluating min,crσ  at axial strain 
increments, for a bar buckling over a single spacing, with yield stress yσ  and ultimate stress uσ . 
Since the bar constitutive material model includes a yield plateau where the tangent modulus is 
zero, the critical surface definition uses the secant modulus during the perfectly plastic region. 

 

Figure 2. Onset of bar buckling and effect of bar inelasticity 

Monotonic Post-Buckling Behavior 
The mainstay of this model is its strain decomposition approach which enables the use of 

an existing steel stress-strain model as base. First, consider the linear-elastic behavior of a classic 
axially loaded steel bar with no lateral supports from transverse ties, and buckling length crL  
corresponding to a critical compressive stress 224 crbbcr LAEJπσ −= . The initial conditions of the 
bar correspond to stress-free ends. An initial imperfection is assumed that results in a mid-height 
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lateral deflection iδ . The initial bowed profile ( )xyi  is described by Eq.(1), with nδ  replaced by 

iδ . Hence, the shortest distance between the ends of the bar is smaller than the full length, which 
is interpreted as an initial shortening corresponding to initial stress-free strain fiε , 
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When the bar is loaded with an axial load P , the resulting deflected profile ( )xy  is the 
algebraic sum of a profile ( )xy1  obtained from the general second-order equilibrium solution of a 
beam with fixed ends and the particular solution representing the initial profile, ( )xyi . 
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where bb EJPk =2 . Next, define the ratio Pα  such that 
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and substitute in Eq. (12), and then add ( )xyi  to obtain 
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The physical significance of the previous derivation represents an interesting concept. An 
applied stress on the bar σ  results in amplification of the bowed initial shape by a factor 
dependant on the ratio crP σσα = . As a result, the total strain tε  along the buckling length of 
the bar comprises two components: the stress-inducing mechanical strain sε  in the steel material 
and an additional stress-free shortening fε  due to amplification of the initial imperfection. In the 
linear elastic range, the first term is dominant, and can typically be computed as ss Eσε = . The 
second term is computed by making use of Eqs. (11) and (14), 

fst εεε +=      and     ( )21 Pfif αεε −=  (15)

Given the small typical values of pα  in the elastic range and the small common values 
for initial imperfection, the value of fε  is insignificant prior to buckling or yielding in 
compression and can be neglected in estimating the linear response without any notable loss of 
accuracy. However, yielding or buckling of the bar significantly changes its stiffness and alters 
the value of Pα . Hence, when the bar reaches either limit case, the bar structural system is 
redefined according to the new material constants, and the initial boundary conditions are set to 
the current configuration of the loaded bar with its current deflection profile. Consider the case 
of a bar which has reached its yielding strain and is starting to exhibit hardening behavior. The 
“new” initial conditions are at the yield point in compression ( )syyy Eσεσ −=−− , , with the 



stress-free strain computed per Eq. (15). These initial conditions are listed with a superscript h  
to denote that loading is taking place in the hardening phase, 

y
h
i σσ −=       and      ( ) ycryfiy

h
fi εσσεεε −≈−+−= 21  (16)

The approximation in Equation (16) is valid since the stress-free strain can be ignored in the 
elastic range. This has the advantage of eliminating the model’s sensitivity to the estimated value 
of iδ . Next, the strain relationships of Eq. (15) are re-written using the new boundary conditions, 
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where h
P∆α  is a redefinition of the ratio Pα  according to 
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where ( )sεσ  represents the constitutive law of the base model and the updated critical stress h
crσ  

is computed using Eq. (10) and the reduced stiffness modulus. Eqs. (17) and (18) can be satisfied 
using an iterative solver. Note that tε  and sε  represent the total and mechanical strains in the bar 
and are not affected by the hardening regime, hence the absence of superscript h . If the updated 
critical stress h

crσ  is lower than the yield stress and the bar therefore buckles before hardening, 
the bar base material effectively unloads while the observed (total) strain increases. Otherwise, 
the stress in the bar will continue to increase until it reaches the buckling stress, yet the bar’s 
stress-total strain response will exhibit reduced hardening stiffness due to the decomposition of 
total strain between a mechanical component that generates stress and a stress-free component. 

 

Figure 3. Model illustration of monotonic post-buckling behavior 

Finally, when bar buckling is detected by Eq. (10), another redefinition of the boundary 
conditions is imposed to update Eqs. (17) and (18), with superscript b  for the buckling phase: 
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where ( bσ , bε ) is the base material’s stress and strain at buckling, ∞|crσ  is the lowest asymptotic 
critical stress calculated by Eq. (10) for the critical surface at the highest credible strain level, 
and the residual strain term rε  preserves strain compatibility in the decomposition equation. This 
residual strain is equal to the stress-free strain h

fε  (if any) at the onset of buckling. The main 
components and behavioral features of this model are illustrated in Fig.3. The base stress-strain 
model for the bar is assumed to follow (Chang and Mander 1994).  

Cyclic Post-Buckling Behavior 
The cyclic response modification to the base stress-strain model involves the following: 

(1) reduction of the unloading stiffness after a compression cycle in which buckling occurred due 
to straightening of the bar (Dhakal and Maekawa 2002b); (2) tracking of the gradual tension 
stiffening behavior in the straightening bar as the stress-free strain is recovered; (3) accounting 
for the amount of this straightening in calculating the reduced buckling stress during subsequent 
compression cycles; and (4) hysteretic reduction in stress up to bar fracture (Brown and Kunnath 
2004). The details of this model are documented in (Talaat and Mosalam, 2007). 

Numerical Simulations of Bar Buckling Tests 
The proposed model is compared to experimental results published in (Monti and Nuti 

1992), (Rodriguez et al. 1999), and (Bae et al. 2005) to assess its validity. The simulated 
experimental investigations include individual steel bars subjected to monotonically increasing 
compressive strains or cyclically increasing strain levels. The end conditions for all bars are 
prevented from rotation and lateral translation. The stress-strain parameter values used in the 
analytical simulation for each group of experiments are listed in Table 1 and defined in Fig.4.a. 
Analytical simulation is performed using the developed bar buckling model and a base stress-
strain material model for the reinforcing steel. The base stress-strain model in (Chang and 
Mander 1994) is used, except for simulations of (Monti and Nuti 1992) where (Menegotto and 
Pinto 1973) is used due to unreported parameter values (Table 1). 

Table 1. Parameter values in bar buckling simulations 

Experiment (Bae et al. 2005) (Rodriguez et al. 1999) (Monti and Nuti 1992) 
sE [GPa] 200 200 200 

shE [GPa] 5 10 8 

yσ [MPa] 440 409 490 

uσ [MPa] 640 700 Not Available 

shε  0.005 0.005 Not Available 

uε  0.16 0.18 Not Available 

Fig.4.b shows the comparison between the model predictions and the monotonic 
compression tests reported in (Bae et al. 2005) for nine levels of the bar slenderness ratio 

12...,,5,4=bb dL . The simulation is successful in capturing the buckling stress for the majority 



of bars except for bars which buckle prior to yielding, with slenderness ratio 10≥bb dL . The 
critical buckling surface during the yielding plateau is not well defined as previously discussed. 
The model is reasonably successful in reproducing the reduction in hardening stiffness between 
yielding and buckling. The model is generally successful in describing the post-buckling 
softening in the bars. The analytically simulated softening branches show discontinuity and 
steeper gradients occurring at lower strains at the onset of buckling. This cannot be observed in 
the experiments due to the load control approach and the average strain calculation method. 

 
(a) Bar stress-strain model parameters (b) Model comparisons to experimental results 

Figure 4. Model simulations of (Bae et al. 2005) bar buckling experiments 

Fig.5.a shows the comparison between the model prediction and the cyclic loading 
experiments conducted in (Rodriguez et al. 1999) for a bar representing the compression 
(concave) side of an axially loaded RC column subjected to cyclic lateral displacement. The 
simulated behavior compares well with the experiment over multiple cycles where buckling-
induced softening is observed. The area of the hysteretic loops in tension after unloading from 
large compression strain levels is only slightly larger in the simulations. 

Fig.5.b shows the comparison between the model prediction and the cyclic loading tests 
conducted in (Monti and Nuti 1992) for steel bars with slenderness ratios of 11. The base 
material response of the latter steel bars follows the stress-strain model in (Menegotto and Pinto 
1973) due to the limited material properties reported in the test. The simulations are generally 
successful in estimating the cycles where buckling is observed and the subsequent softening in 
stress, in estimating the reduced stiffness moduli of the buckled bars upon unloading from 
compression, and in reproducing the subsequent hysteretic behavior in tension. The area of the 
hysteretic loops in compression is underestimated in the simulation at large strain magnitudes in 
Fig.5.b due to the limitations of the base stress-strain model. This is demonstrated in the super-
imposed response using the same base stress-strain model without buckling (Dhakal and 
Maekawa 2002b). The comparison highlights the contribution of the developed bar buckling 
model. This discrepancy only appears for highly slender bars and can be calibrated in the 
presence of additional data and more refined base stress-strain models. The simulated bar 
buckling response at slenderness ratios of 8 and 5 (not shown) do not exhibit this difference in 
hysteretic loop area. 

σy

σu

σy

σu

Strain

Es

Esh

St
re

ss

εuεshεy
0.150.100.05

Strain (compression positive)

800

0

200

400

St
re

ss
 [M

P
a]

 (c
om

pr
es

si
on

 p
os

iti
ve

)

Model prediction

Experiment

Tension test

Lb / db = 4-12

600

0.150.100.05

Strain (compression positive)

800

0

200

400

St
re

ss
 [M

P
a]

 (c
om

pr
es

si
on

 p
os

iti
ve

)

Model prediction

Experiment

Tension test

Lb / db = 4-12

600



(a) Lb/db = 6, (Rodriguez et al. 1999) (b) Lb/db = 11, (Monti and Nuti 1992) 

Figure 5. Model simulations of cyclic bar buckling experiments 

Numerical Simulation of RC Column Tests 
Both column specimens investigated in (Henry 1998) have identical dimensions and 

longitudinal reinforcement. Each column is 610 mm in diameter and 2440 mm in length, in 
addition to a RC anchor block of approximately 730 mm thickness. Column longitudinal 
reinforcement consists of 22 steel bars of 16 mm diameter distributed uniformly around the 
circular cross-section and anchored by extending them inside the anchor block while their ends 
are terminated with °90  bents. Transverse reinforcement consists of 6.4 mm spirals pitched at a 
spacing prescribed for each specimen along the entire column. A fixed axial load is applied on 
each specimen using two steel rods post-tensioned against a steel beam positioned at the top of 
the column, which nearly eliminates P-∆ effects. Symmetric cycles of increasing amplitude of 
lateral displacements are applied using a displacement-controlled actuator with three repetitions 
at each displacement level. The lateral displacement and the applied lateral load at the column tip 
are measured. The axial strain at seven locations along three longitudinal bars is recorded using 
electrical strain gauges. Specimen designations are: 

1. 415P: Axial load = 1310 kN (20% gc Af ′ ), transverse spiral pitch = 32 mm, 
2. 415S: Axial load = 655 kN (10% gc Af ′ ), transverse spiral pitch = 64 mm. 

The FE model of each column consists of a force-based lumped-plasticity beam-column 
element. No P-∆ effect is included in the stiffness matrix. The end plastic hinges are defined 
using the confined cross-section model and the confined concrete uniaxial fiber model developed 
in (Mosalam et al., 2007), with 18 and 2 uniform-thickness layers used to discretize the cross-
section within the core and cover regions, respectively (Fig.6.a). Each layer is segmented into 18 
circumferential sectors encircling a °20  central angle. The fibers representing the steel bars are 
modeled using the bar buckling model, with the material model in (Menegotto and Pinto 1973) 
as the base mechanical stress-strain relationship. The plastic hinge length is adopted from the 
measured lengths over which longitudinal reinforcement is recorded to have yielded. These 
lengths are reported in (Henry 1998) to be 765 and 612 mm for specimens 415P and 415S, 
respectively. The flexibility of the elastic segment of the column is computed using half of the 
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concrete elastic modulus to account for the effect of flexural cracking. The effect of yield 
penetration is modeled using a calibrated rotational spring model (Alsiwat and Saatcioglu, 1992). 

The confined cross-section model in (Mosalam et al., 2007) enables the determination of 
the stress-state in the spiral reinforcement using quasi-lateral strain compatibility. Since this 
model is currently validated only for monotonic curvature increments, the constructed FE models 
are subjected to the imposed axial load and then to simulated pushover by imposing increasing 
lateral deformation at the column tip. For comparison and assessment of model performance, a 
second set of pushover analyses is constructed using the same structural models while disabling 
the buckling feature of the longitudinal steel bars. The comparison is shown in Fig.6.b for 
specimen 415S (results for specimen 415P are similar). Both simulated pushover curves agree 
well with the initial stiffness, the yield displacement, and the envelope of the pre-peak cyclic 
response. The buckling-enabled FE model successfully identifies first bar buckling at a lateral 
displacement of 5.08 in., corresponding to the displacement level at which first bar buckling is 
observed, and is capable of generally following the rapidly descending branch of the envelope, 
while the buckling-disabled FE model is not. FE simulation of the hysteretic column behavior 
and effects of stress reduction is currently underway. 

  
(a) FE model discretization (b) Specimen 415S force-displacement response 

Figure 6. Numerical simulation of RC column tests in (Henry 1998) 

Conclusions 
This paper presents a constitutive model for longitudinal steel bars in RC columns, 

laterally restrained by transverse reinforcement (ties), which achieves the following: 

1. Determines the compressive stress at bar buckling, incorporating tie stiffness; 

2. Uses a strain decomposition approach with an existing steel stress-strain base model; 

3. Capture the post-yield reduction in stiffness and the post-buckling softening response; 

4. Accounts for the decrease in stiffness in the tension response of buckled bars; 
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5. Incorporates hysteretic stress reduction; 

6. Compares well with several experimental bar buckling tests. 

7. One major advantage of the developed bar buckling model is its flexibility for use 
with existing libraries of steel material base models. Clearly, the accuracy of the 
results will depend on how refined the base model is and, particularly, how accurately 
it represents the changes in bar stiffness.  

8. The developed bar buckling model was used in FE models of RC columns subjected 
to lateral load. The simulated push-over response compared well with the envelope of 
the experimental cyclic response, identified the onset of bar buckling, and matched 
the post-peak drop in lateral capacity. 
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