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ABSTRACT 
 
 This paper proposes a coupled axial-shear-flexure interacting (ASFI) hysteretic 

model that can capture the nonlinear interactive behavior of RC bridge columns 
under combined action of shear, bending moment and variable axial load. The 
model utilizes a novel concept of normalization to parameterize the primary 
curves at different axial load levels. An axial load independent stress level index 
at any given ductility is developed to enable the transition between different 
reloading and unloading branches corresponding to variable axial load levels. The 
model is able to realistically simulate the pinching behavior, strength 
deterioration and stiffness softening under combined actions. It is validated 
against the experimental results of columns subject to varying axial loads and 
shows good agreement.  

  
1. Introduction 

 
 Under earthquake shakings, the reinforced concrete (RC) bridge columns are typically 
subjected to combined actions of axial, shear and flexure forces that are direct consequences of 
structural and geometrical constraints (e.g. skewed or curved, uneven span or column heights etc.) 
and the multi-directional input of earthquake motions. More importantly, the axial force in columns 
is changing continuously due to vertical ground motion and it can directly impact the ultimate 
capacity, stiffness and hysteretic behavior of shear and flexure responses owing to the axial-shear-
flexure interaction (ASFI), as indicated by ample laboratorial evidences (Abrams 1987; Gould and 
Harmon 2002; Sakai and Kawashima 2000). The axial load fluctuations and the associated ASFI of 
RC columns may have adverse impacts on the overall performance of bridges. Therefore, a robust 
analytic model capable of realistically simulating the nonlinear interactive behavior of RC columns 
under the combined actions is needed. 
 To fully understand the mechanism behind the ASFI in RC columns, it is necessary to 
conduct the very detailed sectional analysis which considers the material behaviors and properties 
(constitution laws), the relationship between different local strain components (compatibility 
conditions), and the transmission of forces and stresses over the cross section (equilibrium 
equations). The Modified Compression Field Theory (MCFT, Vecchio and Collins 1986) is one of 
the pioneer studies of this kind. Many contemporary studies combine the classical fiber model 
(Spacone et al. 1996) with MCFT to develop new approaches that are capable of capturing both the 
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axial-flexure and shear-flexure behaviors (Vecchio and Collins 1988; Mostafaei and Kabeyasawa 
2007). Nevertheless, this paper is focused on the concentrated plastic hinge type model that can be 
used in displacement-based finite element programs. Although empirical and approximate, this 
type of model is relatively easy to be implemented and computationally efficient for the purpose of 
conducting seismic assessment of bridges. 
 Built upon the shear-flexure interaction scheme developed by the authors (Xu and Zhang 
2009), this study proposes a nonlinear ASFI model that can account for the effects of varying axial 
load. By introducing the concepts of normalization of primary curves (NPC), the entire primary 
curve family of a column can be fully defined and estimated from any reference primary curve 
corresponding to a known axial load level. An axial load independent stress level index (SLI) is 
proposed and used to mark the effective stress level of a column at any given displacement 
ductility. The SLI enables the identifying of equivalent loading state subject to any axial load level; 
hence the transition between different unloading and reloading branches pertaining to various axial 
load levels can be achieved. The proposed ASFI model is validated against a column test program 
showing excellent agreement between the predicted and measured hysteretic responses.   
 

2. Shear-Flexure Interaction Model of Columns with Constant Axial Load 
 
 A coupled hysteretic model to account for nonlinear shear-flexure interactive behavior of 
RC columns under constant axial load has been developed and validated by the authors (Xu and 
Zhang 2009). The proposed hysteretic model consists of a flexure and a shear spring coupled at 
the element level, whose nonlinear behaviors are governed by their respective primary curves 
and a set of improved loading/unloading rules to capture the pinching, stiffness softening and 
strength deterioration of columns due to combined effects of axial load, shear force and bending 
moment. The shear-flexure interaction (SFI) is considered both at section level when 
theoretically generating the primary curves using the MCFT and at element level through 
enforcing the local and global equilibrium at any given time. The model has been implemented 
as a user element in a displacement-based finite element program, ABAQUS and calibrated 
against a large number of column specimens from static cyclic tests to dynamic shake table tests 
showing excellent agreement with experiment data for both flexure and shear dominated 
columns. The proposed model is computationally efficient and has been used reliably in 
conducting realistic seismic assessment of several bridges (Zhang and Xu 2009).  
 Fig. 1 describes the general procedure of the SFI scheme where MCFT is used to obtain 
the primary curves for flexural and shear springs in the coupled hysteretic SFI model. Under the 
constant axial load, the moment-curvature and the shear force-shear strain relationships of the 
section depend on the moment-to-shear (M/V) ratio (or equivalently the aspect ratio H/D) and 
sectional properties (geometry, reinforcement and material etc.). Using the software, 
RESPONSE 2000 (where MCFT has been incorporated) and following the procedure shown in 
Fig.1, the primary curves and the critical points corresponding to the cracking and yielding 
points can be defined. Built upon the pioneering shear hysteretic model by Ozcebe and 
Saatcioglu (1989) and the well-known flexure hysteretic model by Takeda (Takeda et al. 1970), 
improved loading/unloading rules are derived, which govern the hysteretic behavior based on the 
loading history and critical points on the primary curve.    
 The axial load variation is essentially inevitable due to the vertical ground motion 
component. It can affect the nonlinear behavior of columns under the combined loadings in 
several ways. The primary curve governing the monotonic lateral force-lateral displacement 



behavior will be changed with different axial load levels. For two identical RC sections subject 
to the same shear force and bending moment but different axial loads, the distribution of normal 
stresses over the cross section will be different, resulting in two distinct sets of strain fields and 
principal planes, according to the MCFT. These changes in turn directly affect the computed 
curvature and shear deformation and consequently the primary curve. Therefore, the axial load 
variation affects not only the lateral capacity but also the stiffness of the columns. Furthermore, 
the crack path in concrete material essentially follows the principal planes. The rotation of 
principal planes owing to various levels of axial loads will also alter the crack patterns at critical 
sections and contribute to the final failure modes of the RC columns. Finally, the axial load level 
is one of the dominant parameters that control the pinching behavior of RC columns (Ozcebe and 
Saatcioglu 1989; Xu and Zhang 2009). Pinching behavior is more significant when the columns 
are subjected to tensile or low level of compressive axial loads as a result of crack widening and 
closing during the load reversal. Appropriate modeling of above-mentioned effects of axial load 
variation is extremely important for conducting the seismic response analysis of bridges.  
 

 
Figure 1. Implementation of the SFI scheme 

 
3. Axial-Shear-Flexure Interaction Model of Columns with Variable Axial Load 

 
3.1 Parameterized Primary Curves under Variable Axial Load 
 
 As discussed in the previous section, the change in primary curves due to variable axial 
load need to be captured in order to describe the axial-shear-flexure interaction (ASFI) behavior 
of columns. Fig. 2 plots the theoretically derived total primary curves of three column specimens 
under different axial load levels ranging from 5% tension to 20% compression of their respective 
nominal axial capacity. As the compressive axial load increases, the lateral resistance of the 
column becomes stronger and stiffer. However, the yield displacement (defined as the point on 
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primary curve where the stretched rebars first yield) remains almost unchanged, despite that the 
ultimate capacity, yielding load, and crack point all increase together with the applied axial load 
level, as demonstrated in Fig. 2. By normalizing the critical points (in terms of cracking 
displacement and force, yielding force and ultimate capacity) at given axial load levels with the 
yielding point of the primary curve under 5% axial compression, one can plot the normalized 
quantities with the applied axial load levels as shown in Fig. 3. Based on the data of three 
column specimens in Fig. 2, the regression equations are obtained and shown in Eqs.1 to 4. They 
can be used later on for generating the primary curves at any axial load level based on a 
reference curve, e.g. the 5% axial load curve. Therefore, the critical points and primary curves 
can be fully parameterized and described. 
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Figure 2. Critical points and total primary curves of columns under different axial loads 
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Figure 3. Variation of critical points with respect to the applied axial load 
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Figure 4. Rules for mapping between primary curves 

 

 Generation of the entire primary curve family under any specific level of axial load (but 
within the reasonable range from -5% to 40% of its own ultimate axial compressive capacity) is 
made possible by following the rules listed below and illustrated in Fig. 4: 
(a) Yield displacement is assumed unchanged under variable axial load and the ultimate 

displacement is taken at ductility level of 2. 
(b) Crack point, yield load, and ultimate load are estimated using Eqs.1 to 4. 
(c) For a given initial primary curve associated with I% axial load, apply rules (a) and (b) to 

find the critical points on the 5% axial load curve. Then, use this 5% axial load curve and 
rules (a) and (b) again to obtain the critical points on any desired n% axial load curve. 

(d) Points on the primary curves falling in between from origin to crack point [case (i) in Fig. 
4], from crack point to yield point [case (ii) in Fig. 4], or from yield point to ultimate 
point [case (iii) in Fig. 4] are determined using linear interpolation. 

(e) For points with ductility larger than the ultimate point [case (iv) in Fig. 4], the 
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displacement are assumed to remain unchanged but the force is varied in a way such that 
the load ratio between the two primary curves is kept constant and equal to the ratio at the 
ultimate point [i.e., b/(a+b) in Fig.4].  

 With the proposed normalization of primary curves and mapping rules, the idea of “shift 
of primary curves” (Saatcioglu et al. 1983) is no longer limited to a certain number of pre-
defined primary curves associated with some prescribed levels of axial loads. 
 
3.2 Mapping between Unloading/Reloading Branches according to Effective Axial Load 
 
 In addition to the primary curves, the unloading/reloading stiffnesses are also affected by 
the axial load variation. During the transient analysis of bridge response under earthquakes, the 
axial forces in columns will fluctuate from their initial static axial load levels and may 
occasionally go into the tensile side due to the vertical ground motion component (Zhang and Xu 
2009). Consequently, it is also required to map between different unloading and reloading 
branches pertaining to various levels of axial load in a loading hysteresis. A crucial assumption 
is developed, which states that the effective lateral stress level of a loaded column at the fixed 
displacement ductility is independent of applied axial load. This assumption dictates that for a 
RC column subject to a prescribed lateral loading history, although the axial load variation at the 
current loading stage may change its lateral capacity, as long as there is no further change in 
lateral deflection, the ratio of effective lateral load to the lateral capacity on the primary curve 
will remain the same. A stress level index (SLI) is therefore defined as the current lateral load on 
the unloading/reloading branches divided by the lateral load on the primary curve associated 
with the maximum experienced lateral displacement, Δmax, as shown below: 
 

 
max

Effective Lateral Load, 
Stress Level Index=

Lateral Capacity at , 
eff

m

V

V
 (5) 

 
 Fig. 5 graphically explains how this axial load independent SLI works. In Fig. 5, the 
primary curves of the same column under three different levels of axial loads are plotted in solid 
blue lines. The SLI as currently shown in the figure are equal to c/d for all three cases. If the 
lateral deflection is fixed at Δ1 and the axial load fluctuates among the three axial load levels, the 
effective lateral load will move up and down to keep the SLI as a constant (i.e., c/d in Fig.5). 
 

 
Figure 5. Rules for mapping between unloading and reloading branches 
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 If during the analysis, both the axial load and lateral deflection have been varied from the 
previous time increment, the loading state at current time increment can be broken into two sub-
stages: the constant lateral deflection stage and the constant axial load stage. This two-stage 
loading approach is illustrated in Fig. 6. In the first sub-stage (constant lateral deflection), the 
lateral deflection is forced to keep constant thus the effective lateral load will move only upward 
or downward to stay at the same SLI [in this example, equal to c/d]. Next in the second sub-stage 
(constant axial load), it is the axial load that is forced to keep constant so the hysteretic SFI 
models (aforementioned in section 2) can be applied to determine the loading state on current 
unloading or reloading branches. The two-stage loading approach requires no local iteration to 
solve for the lateral loads and lateral stiffnesses, therefore it is a much more efficient solution 
approach than the fiber section approaches. 

 
Figure 6. Illustration of constant lateral deflection (left) and constant axial load (right) stages 

 
4. Model Validation 

 
 Four RC columns (Sakai and Kawashima, 2000) with identical dimensions (400mm x 
400mm square section, 1350mm in height, with effective depth =360mm), reinforcement 
(longitudinal reinforcement ratio =1.58%, transverse reinforcement ratio = 0.79%), and material 
strength (fc’≈23.0MPa, fy,longi.=374MPa, fy,tie=363MPa) tested under controlled displacement 
hysteresis and under various axial load conditions were used to validate the proposed axial-
shear-flexure interaction modal. The configuration of applied axial loads in the test program is 
listed in Table 1. The axial load in specimen TP-031 was kept constant in compression at 12.8% 
of its ultimate axial capacity while that in specimen TP-032 was kept constant at -4.62% 
(tension). The axial loads in the last two specimens, TP-033 and TP-034, vary in phase with the 
applied lateral displacement. Loading hystereses of specimens TP-033 and TP-034 are plotted in 
Fig. 7. 
 

Table 1. Applied axial loads in the experimental test program 
 TP-031 TP-032 TP-033 TP-034 

Axial Force (kN) +470 (constant) -170 (constant) -10 ~ 310 -170 ~ +420 
Axial Load Ratio +12.8% (Comp.) -4.62% (Tension) -0.27%T ~ +8.5%C -4.62%T ~ +11.4%C 

 
 

 To validate the proposed rules for mapping of primary curves among distinct axial loads, 
the envelope of the hysteretic response of specimen TP-031 (axial load level = +12.8%C) is 
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input as the initial primary curve to the model, then the prediction on the hysteretic response of 
TP-032 (axial load level = -4.62%T) is made and compared with the experimental data. Similar 
evaluation is made on the hysteretic response of TP-031 when the envelope of TP-032 is input 
into the system as the initial primary curve. The predicted hysteretic responses (dot red lines) of 
the two cases are plotted in Fig. 8, together with the experimental data (solid blue lines). The 
good agreement between the predicted and experimental loops indicates that the proposed 
mapping rules are appropriate to parameterize the entire primary curve family for RC columns. 
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Figure 7. Axial and lateral loading hystereses applied to specimens TP-033 and TP-034 
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Figure 8. Hysteretic responses of specimens TP-031 and TP-032 

 
 Fig. 9(a) compares the predicted (dot red lines) hysteretic response of specimen TP-033 
(axial load level varying from -0.27%T to +8.5%C) with its test results (solid blue lines), when 
the envelope (bold solid green line) of the hysteretic loops of specimen TP-031 (axial load level 



= 12.8%C constant) is input as the initial primary curve. Similar comparison of the specimen TP-
034 (axial load level varying from -4.62%T to +11.4%C) is shown in Fig. 9(b), in which the 
envelope of TP-032 (axial load level = -4.62%T constant) is used as the initial primary curve. 
The good agreement between the predicted and experimental loops in both cases validates the 
idea of axial load independent stress level index and the proposed two-stage loading approach. 
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Figure 9. Hysteretic responses of specimens TP-033 and TP-034 

 
 It is noteworthy that the lateral capacities of specimens TP-033 and TP-034 are different 
in the two opposite loading directions. In these two tests, the axial load is increasing as the 
column is deformed to the right, and it keeps decreasing when the column is pulled back to the 
left. The capacity is larger when the applied axial load level is higher, and vice versa. It is clear 
that the axial load variation does have a crucial effect on the lateral response of RC columns. 

 
5. Conclusions 

 
 Axial load variation in a RC column can alter its stiffness, ultimate capacity, and 
hysteretic responses. A shear-flexure interaction scheme previously developed by the authors for 
modeling the responses of RC columns subject to constant axial load is enhanced in this study to 
enable the consideration of varying axial load. By applying the novel concept of normalization 
of primary curves, the entire primary curve family of a RC column under various levels of axial 
load can be retrieved from any reference primary curve subject to a known axial load. Transition 
among unloading and reloading branches pertaining to different axial load levels during loading 
reversals is made possible by adopting the proposed two-stage loading approach. The two-stage 
loading approach includes a constant axial load and a constant lateral deflection sub-stages. It 
requires no local iteration to determine the tangent stiffness and lateral load and therefore 
suitable for spatially complicated multi-degree-of-freedom systems. The proposed ASFI model 
has been validated against a column test program showing very good comparisons between the 
predicted and observed hysteretic responses. The ASFI model can be used to simulate the 

Axial load increasing
Axial load increasing 

Axial load decreasing Axial load decreasing 



realistic behavior of bridge columns, and it provides an alternative approach other than the more 
complicated fiber models to efficiently conduct the transient analyses of bridge systems subject 
to both the horizontal and vertical components of ground motion. 
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