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ABSTRACT 
 
 The effect of the spatial variation of earthquake ground motions on the seismic 

response of concrete gravity dams is investigated. The Koyna Dam is idealized as 
a two-dimensional finite element model incorporating nonlinearities in the 
concrete and rock masses, and interactions between the dam, the reservoir, the 
sediments and the foundation. Sensitivity analyses of the response of the 
transverse cross section of the dam to the apparent propagation velocity of the 
seismic excitation are then performed. It is shown that the slower propagating 
motions yield the highest response and the most severe damage patterns in the 
structure. Hence, the assumption of uniform seismic excitations at the base of the 
structures does not lead to a conservative response for concrete gravity dams.  

  
Introduction 

 
The performance of concrete gravity dams in a seismic environment is an important issue 

of public concern and research attention. Typically, the analysis of their dynamic response to 
seismic excitations is performed under the assumption that the seismic ground motions over the 
entire foundation surface area are uniform. It has been shown, however, that the response of 
structures with large base dimensions, such as bridges, dams and power plants, can be affected 
by the spatial variation of the seismic excitations, as it induces the quasi-static response of the 
structures and excites their dynamic response differently than uniform seismic motions (e.g. 
Zerva 2009). This paper presents a sensitivity analysis of the response of concrete gravity dams 
subjected to spatially variable seismic excitations incorporating wave passage effects. The 
approach utilizes the finite element method and considers the coupled dam-reservoir-sediment-
foundation system. The following features are included in the computational model: a 
displacement-based nonlinear dynamic formulation for the dam and the foundation; a pressure-
based wave formulation for the reservoir; a coupling procedure for the dam-reservoir-foundation 
interaction; and consideration of the infinite reservoir and foundation domains. The Koyna Dam 
in India is then utilized for the sensitivity analysis. The two-dimensional model of the transverse 
cross section of the dam is subjected to the Koyna Earthquake record that is assumed to 
propagate on the ground surface with an infinite apparent propagation velocity (uniform 
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motions) and two finite ones (4000 and 2000 m/sec).  The comparison of the wave passage effect 
on the structural response is made in terms of crest accelerations, peak stress contours and crack 
patterns in the body of the dam, and deformations at the dam-foundation interface.  
 

Numerical Formulation 
  
Dam-Reservoir-Sediment-Foundation System 
 

The problem considered in this study consists of a gravity dam with a vertical upstream 
face, which impounds an infinite reservoir with bottom sediment deposits and rests on a semi-
unbounded foundation. A schematic illustration of the coupled dam-reservoir-sediment-
foundation system is shown in part (a) of Fig. 1. Part (b) of the figure presents the classification 
of domains and boundaries, which will be utilized in the description of the mathematical 
formulation of the dynamic problem presented next. 

            
      (a)           (b) 
 

Figure 1.    Schematic diagram of dam-reservoir-sediment-foundation system in part (a), and 
classification of domains and boundaries in part (b). 

 
 
Modeling of the Fluid Domain and its Boundaries 
 

The differential equation for small motions of an inviscid compressible fluid in the linear 
range is expressed as: 
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in which rB  is the bulk modulus of the fluid in the reservoir, rρ  its density, p  indicates the 
hydrodynamic pressure in excess of the hydrostatic pressure, overdot denotes time 
differentiation, and 2∇  is the Laplacian operator.  
 

The following boundary conditions at the interfaces of the fluid domain (Fig. 2(b)) are 
then defined: 



 
(i) At the free surface of the reservoir ( fΓ ), neglecting the effect of formation of surface 

waves yields the boundary condition: 
 

p=0                                                                                                                                    (2) 
 

(ii) At the truncated boundary of the infinite reservoir ( rΓ ), Sandler’s nonreflecting 
boundary (Sandler 1998) is applied: 
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where rn   is the outward normal derivative of the fluid domain and θ  is the angle of incidence of 
the plane waves at the boundary. 
 

(iii) At the dam-reservoir interface ( drΓ ), excluding cavitation effects, the continuity 
condition between the fluid and solid domains leads to: 
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where s
1u&&  is the acceleration of the dam at the interface. 

 
(iv) At the foundation-reservoir interface ( frΓ ), the reservoir bottom material is 

represented by the following impedance condition: 
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where s
2u&&  is the acceleration of the foundation, and rα  indicates the wave reflection coefficient 

of the reservoir sediment (Fenves and Chopra 1984). 
 
Modeling of the Solid Domains and their Boundaries 
 

The nonlinear mechanical behavior of the dam concrete and foundation rock is 
approximated by the damaged plasticity model (Lee and Fenves 1998, Lubliner et al. 1989) and 
the jointed rock model (Zienkiewicz and Pande 1977), respectively. The dynamic equilibrium 
equations governing the dam and the foundation response are described by: 

 
s s s s
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where subscripts i=1  or 2  indicate whether the equation refers to the dam or the foundation, 
superscript s  denotes solid,  k,j=1, 2, 3 indicate direction and indicial notation has been utilized 
over j , s

iσ  is the stress, s
if  is the body force, s

iρ  the density, and s
iu&&  the acceleration.   

 
The surface tractions t  at the boundaries of the solid domains (Fig. 1(b)) obey the 



following constraints: 
 

(i) On the fluid-solid interface ( rs dr frΓ =Γ Γ∪ ): 
 

s
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where p is the fluid pressure and s
in  the outward normal to the solid. 

 
(ii) On the dam-foundation contact interface ( cΓ ): 

 

c
ii tt =                                                                                                                                 (8) 

 

where c
it  are the contact loads.   

 
(iii) On the external boundary of the finite solid domain ( ebΓ ): 

 

eb
22 tt =                                                                                                                               (9) 

 

where eb
2t  are surface tractions excluding fluid pressure and contact loads.   

 
Coupling of the Fluid and Solid Domains  
 
 The combination of the fluid and solid virtual work contributions obtained by integrating 
Eqs. 1 and 6 by parts, the consideration of the boundary conditions defined in Eqs. 2-5 and 7-9, 
and the standard finite element discretization procedure lead to the following differential 
equation of motion of the coupled system in matrix form: 
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in which ][ rM  and ][ sM  refer to the fluid and solid mass matrices, respectively, ][ rC  is the fluid 
damping matrix, ][ rK  the fluid stiffness matrix, ][ rsH  the fluid-solid coupling matrix, tnif  the 
solid nonlinear internal force vector, sf  the solid body force vector, cf  the solid contact force 
vector, ebf  the solid surface load vector excluding fluid pressure and contact forces, and 
superscript T indicates transpose. It is noted that the terms originating from material and 
radiation damping of the solid domains are implicitly incorporated in tnif  of Eq. 10.  

 
To appropriately represent the dam-foundation interaction, a contact surface is defined at 

the dam-foundation interface: The contact interaction in the normal direction is characterized by 
“hard” contact behavior (Abaqus 2007), and the tangential contact interaction by the Coulomb 
friction law with an allowable slip (Teckie and Ellingwood 2002). The fluid-structure 
interactions at the dam-reservoir and foundation-reservoir-sediment interfaces are modeled using 
a surface-based coupling procedure (Abaqus 2007). The effects of reservoir bottom sediment 
absorption are incorporated by enforcing the impedance condition specified in Eq. 5 at the 
foundation-reservoir interface.  

 



Earthquake Input Mechanism 
 

In evaluating the earthquake performance of concrete dams, it has been recognized that 
the manner in which the seismic excitations are applied to the numerical model may affect the 
structural response. A commonly utilized approach is to perform first a deconvolution analysis of 
the original free-field earthquake ground motion to the desired depth. The deconvolved motion is 
then applied at the base of the foundation and allowed to propagate upward through the 
foundation. However, the reliability of the results obtained with this approach depends, to a large 
extent, on the accuracy of the deconvolution process (Leger and Boughoufalah 1989). It is also 
noted that, in the deconvolution process, it is difficult to incorporate soil material nonlinearities 
and spatially variable seismic ground motions. An alternative approach is to specify the recorded 
free-field earthquake acceleration at the dam-foundation interface. The primary drawback of this 
approach, however, is that the motions at the level of the ground surface, where the free-field 
accelerations are exerted, are assumed not to be affected by the dam. On the other hand, the 
advantages of the approach are that deconvolution analyses are avoided and, theoretically, it is 
possible to specify any spatially varying ground motions as input excitations to the structure. In 
view of the pros and cons of the earthquake input mechanisms, the present study imposes the 
free-field earthquake acceleration at the foundation ground surface. Leger and Boughoufalah 
(1989) observed that this approach and the deconvolution method gave similar results for 
uniform seismic motions, vertically incident waves, and linear models of the dam and the 
foundation. 
 

Sensitivity Analysis of Wave Passage Effects 
 
Numerical Model of the Koyna Dam 
 

The Koyna Dam in India is utilized for the sensitivity analysis of the effect of spatially 
variable excitations on dams. The computational evaluation is performed in Abaqus/Standard 
(2007). The geometry of a typical non-overflow monolith of the Koyna Dam, which is modified 
slightly from its real configuration, is illustrated in Fig. 2(a). The finite element model of the 
dam, presented in Fig. 2(b), is assumed to be under plain strain conditions. The dam and the 
near-field foundation are modeled by 4-node bilinear continuum plane strain elements. The 
reservoir is modeled by 4-node bilinear acoustic elements. The reservoir dimensions are 385 m 
length and 91.75 m depth. The finite foundation domain is 840 m long and 420 m deep; the rock 
mass contains one set of planes of weakness with joints inclined at an angle of 52.5º. In addition, 
4-node linear plain strain infinite elements, as indicated by the open elements in Fig. 2(b), are 
employed to simulate the far field. The material properties adopted in the analysis are: i) for the 
concrete: Young’s modulus 31027 MPa, Poisson’s ratio 0.20, density 2643 kg/m3, dilation angle 
36.31º, compressive initial yield stress 13.0 MPa, compressive ultimate stress 24.1 MPa, tensile 
failure stress 2.9 MPa; ii) for the rock: Young’s modulus 16860 MPa, Poisson’s ratio 0.18, 
density 2701 kg/m3, cohesion 0.6 MPa, angle of friction 41º; and iii) for the water: bulk modulus 
2701 MPa, density 1000 kg/m3, reservoir sediment reflection coefficient 0.5. Rayleigh stiffness 
proportional damping is assumed to provide a 3% damping ratio of the first mode of vibration of 
the linear structure. The dam-reservoir-sediment-foundation system is first subjected to the static 
loads including gravity and hydrostatic pressure and then to the dynamic earthquake loading.  
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                              (a)           (b) 
 

Figure 2.    Geometry of a non-overflow monolith of the Koyna Dam in part (a) and finite 
element modeling of the dam-reservoir-foundation domain in part (b). 

 
Description of Input Excitation 
 

In 1967, the Koyna Dam experienced a magnitude 6.5 earthquake. The event caused 
considerable damage to the dam, including the development of horizontal cracks on both the 
upstream and downstream faces of a number of the monoliths. The top subplot of Fig. 3 shows 
the horizontal component of the Koyna Earthquake record, which will be utilized in the 
subsequent evaluation. Sensitivity analyses of the response of the dam to spatially varying 
ground motions are conducted by considering wave passage effects.  The spatially variable 
seismic excitations are modeled by the propagation of horizontally travelling seismic waves with 
two finite apparent propagation velocities, vapp= 2000 and 4000 m/sec, and an infinite one; the 
last case represents the condition of uniform excitation. The simulated ground motions utilized 
as input excitations at the rightmost node of the foundation surface for the aforementioned three 
earthquake loading scenarios are plotted, in descending propagation velocity order, in Fig. 3.  
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Figure 3.    Input excitations at the rightmost node of the foundation surface for different loading 
scenarios. 



Seismic Response Evaluation of the Koyna Dam  
 
The results of the evaluation are presented in the following figures. The horizontal acceleration 
response at the dam crest for the different ground motion input scenarios is shown in Fig. 4. For 
uniform ground motions (top subplot), the peak acceleration occurs at 4.159 sec with an 
amplitude of 1.65 g. For motions propagating with an apparent velocity of 4000 m/sec (middle 
subplot), the peak response with an amplitude of 1.68 g occurs at 4.267 sec, and for the slower 
propagating motions (bottom subplot), the peak amplitude of 1.84 g occurs earlier than the other 
two cases at 3.433 sec.  It is noted that the response for all types of excitation is very significant; 
this may be attributed, in part, to the low value of damping utilized in the evaluation and, also, to 
the approach for inputting the seismic excitation to the numerical model. The response 
characteristics for an infinite apparent propagation velocity and a velocity of 4000 m/sec are 
fairly similar, indicating that, for vapp= 4000 m/sec, the excitation travels fast enough so that the 
time delay in the arrival of the waves throughout the finite domain of the model does not play a 
considerable role. On the other hand, even though the response acceleration time series for vapp= 
2000 m/sec appears, at first glance, similar to the other two (Fig. 4), its peak value occurs earlier, 
and, during the time interval of the larger oscillations (approximately between 3 and 4.5 sec), the 
amplitude of the response is larger. This suggests that the lower apparent propagation velocity 
caused additional cracking and sliding of the structure than the faster propagation velocities, thus 
making the structure more flexible. This observation is further corroborated with the results 
presented in Figs. 5-8.  
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Figure 4.    Acceleration response at the dam crest under spatially variable seismic excitations 

with different apparent propagation velocities. 
 

Part (a) of Figs. 5-7 displays the peak von Mises stress contours occurring in the body of 
the dam for each input case at a specific time instant. The time instances were selected to be 
close to the peak amplitude acceleration response for the faster apparent propagation velocities 
and, from Fig. 4, close to the corresponding peak for the case of vapp= 2000 m/sec (i.e. 4.165, 
4.279 and 4.401 sec, respectively). At these particular instances, high stress concentrations are 
observed in the slope transition region on the downstream dam face.  It is noted that, during the 
reversing  oscillatory cycles  of the response  (Fig. 4), high stress concentrations also occur at the  



           
                (a)          (b)                      (c)  
 

Figure 5.    Peak stress (in Pa) and damage contours of the dam at 4.165 sec for earthquake input 
with infinite propagation velocity: (a) von Mises stress; (b) DAMAGET; (c) SDEG. 

 
 

           
                (a)          (b)                      (c)  
 

Figure 6.    Peak stress (in Pa) and damage contours of the dam at 4.279 sec for earthquake input 
with vapp=  4000 m/sec: (a) von Mises stress; (b) DAMAGET; (c) SDEG. 

 

 

           
                (a)          (b)                      (c)  
 

Figure 7.    Peak stress (in Pa) and damage contours of the dam at 4.401 sec for earthquake input 
with vapp= 2000 m/sec: (a) von Mises stress; (b) DAMAGET; (c) SDEG. 



base of the neck of the dam on its upstream face. The observed high stress concentrations 
suggest that cracks may have formed in this vulnerable dam region. The concrete cracking 
patterns in the dam are clearly demonstrated in parts (b) and (c) of Figs. 5-7, which present the 
DAMAGET and SDEG damage contours, respectively, for the three excitation cases. 
DAMAGET and SDEG are Abaqus (2007) classifications for visualizing crack development: In 
case of no compressive damage, DAMAGET > 0 and SDEG > 0 represent an open crack, 
whereas DAMAGET > 0 and SDEG = 0 stand for a closed crack. Figures 5-7 indicate that 
stresses and the degree of damage in the body of the dam increase with decreasing apparent 
propagation velocity, with a slight increase from the case of uniform input excitation to that of 
motions propagating with vapp= 4000 m/sec, but with a more dramatic one when the motions 
propagate with the lower apparent velocity of 2000 m/sec. In this latter case, the cracks have 
penetrated throughout the neck of the dam (Figs. 7(b) and (c)). Another factor that can have 
considerable impact on the dam response is the contact opening and slipping at the dam-
foundation interface. Part (a) of Fig. 8 presents the contact opening at the heel of the dam and 
part (b) the contact slipping at its toe for the various excitation propagation velocities. The result 
patterns are similar to those observed earlier in Figs. 4-7. Whereas the contact opening and 
slipping responses under different excitations share, basically, similar characteristics, i.e. the 
intermittent “peak” profile for opening and the “step” curve for slipping, the deformations 
become more pronounced for the lowest apparent propagation velocity. In this case, contact 
opening (Fig. 8(a)) occurs with higher amplitudes over a longer duration and contact slipping 
(Fig. 8(b)) is more severe.  
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Figure 8.    Contact opening, in part (a), and slipping, in part (b), at the dam base for various 
earthquake input cases. 

 
Conclusions 

 
A nonlinear finite element analysis was utilized to investigate the effect of the spatial var-

iation of seismic ground motions on the response of concrete gravity dams. Features of the 
numerical model include nonlinearities in the body of the dam and the foundation, contact 



interfaces between the fluid-and-solid and solid-and-solid domains, consideration of the 
reservoir sediment effect, and modeling of the infinite domains. The response of a two-
dimensional transverse cross section of the Koyna Dam subjected to spatially variable excita-
tions was then evaluated. The excitation was the 1965 Koyna Earthquake record that was 
assumed to propagate on the ground surface with an infinite apparent propagation velocity 
(uniform motions) and two finite ones (4000 and 2000 m/sec). Whereas the results for the higher 
propagation velocities appear to be similar, a trend of increasing structural response with 
decreasing propagation velocity was observed, with the slower propagating excitations yielding 
the highest response and the most severe damage patterns in the structure. Hence, the assumption 
of uniform motions as input excitations at the base of the structures does not lead to a conserva-
tive response for concrete gravity dams.  
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