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ABSTRACT 
 
 In this paper efficient seismic damage classification procedures based on artificial 

neural networks (ANN) and neuro-fuzzy (NF) systems combined with a genetic 
algorithm (GA) are reported. The proposed method uses a set of artificial 
accelerograms in order to examine damages on buildings, expressed by several 
damages indices. With the use of seismic accelerograms, a set of twenty seismic 
parameters have been extracted for the seismic excitation description. In this 
approach the GA algorithm was used to find the optimal feature subset of the 
seismic parameters that minimizes the computational cost and maximizes the 
classification performance. The proposed methods have been applied to a six-
story reinforced concrete frame structure. The results indicate that the use of the 
GA was able to classify the damages in the examined building with classification 
rates up to 100%, while the mean correct classification rate is 91.54%. 

   
Introduction 

 
 Seismic accelerograms are records of ground acceleration versus time during earthquakes 
that cannot be described analytically. However, several seismic parameters have been presented in 
the literature during the last decades that can be used to express the intensity of a seismic excitation 
and to simplify its description. Post-seismic field observations and numerical investigations have 
indicated the interdependency between the seismic parameters and the damage status of buildings 
after earthquakes. The latter can be expressed by proper damage indices [DiPasquale 1989, Park 
1985]. 
 
 For the present classification system the proposed algorithm consists of two processing 
stages. First a set of artificial accelerograms have been used to describe the earthquake ground 
motion. Then, a set of twenty parameters have been extracted from seismic signals to express the 
damage potential of earthquakes. In addition, several damage indices have been used to estimate 
the earthquake damages in structures. Previous works prove that there is a correlation between the 
damage indices and the aforementioned intensity parameters [Elenas 2000, Elenas 2001].  
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  At the second stage of processing a genetic algorithm (GA) has been used to reduce the 
number of the seismic parameters and find the subset that maximizes the classification rates. The 
GA starts the feature extraction process using an initial population of individuals (combination of 
seismic parameters) and after a specific number of generations produce an optimal single solution. 
In order to select the optimum representation of seismic signals different kinds of classifiers have 
been used. Previous studies [Alvanitopoulos 2008] proposed artificial neural networks and artificial 
neuro-fuzzy inference systems for the classification of seismic damages. The classification 
accuracy of these systems has been used to evaluate the fitness value of the individuals. 
 
 The last part of the research was the investigation of the classification performance. The 
classifiers have been trained and simulated using the optimal subset of the intensity parameters. 
Classification results testify the effectiveness of this method. 
 
 The proposed methodology is a simple tool for the evaluation of the post-seismic damage 
status of buildings in form of damage degree, avoiding complicated and time consuming nonlinear 
dynamic analyses. The procedure can be used by the public administration for the evaluation of 
damage scenarios of separate important buildings, building blocks, or even of whole regions. This 
is important for the adequate post-seismic distribution of financial and other resources in the case 
of severe earthquakes. Another application of the proposed technique is its implementation on a 
micro-chip in combination with an accelerograph and a signal transmit unit for the direct and in 
real time evaluation of the damage status of a building after an earthquake. Thus, the administrative 
officials would be informed about possible damage extension of important buildings (hospitals, fire 
stations, bridges, etc.) or even of whole regions, immediately after an earthquake. In the latter case 
the proposed model after the training phase, is far easier to implement on a micro-chip than the 
complicated nonlinear dynamic procedure. 
 

Genetic Algorithms 
 
 Genetic algorithm is an adaptive search and an optimization model which have been 
inspired from the principles of natural evolution [Sivanandam 2008]. Genetic algorithms were 
first introduced in the early 1970s by John Holland. They are able to exploit the information 
from the acceptable solutions and select the optimal one.  
 The implementation of a GA starts with the generation of the initial population of the 
candidate solutions. Usually the selection of the first population is random. GA is an iterative 
process which modifies the current population by selecting individuals to be parents and uses 
them to produce the children for the next generation. A more detailed description of the GA 
procedure is given below: 
Generation of the initial population: Assume a population p = {x1, ... , xN} with N individuals. 
Each member of the population is a string of length L. Each string xi is referred to as a 
chromosome. 
Fitness function: Every chromosome is evaluated and assigned a fitness function f(xi). The 
lower the fitness is the better is the chance for this chromosome or its descendants to survive. 
Selection process: Here, chromosomes equal to the number N (number of individuals in initial 
population) are selected for reproduction. All chromosomes have the opportunity, to be picked 
for reproduction, proportional to theirs fitness value. Selection is done "with replacement" 
meaning that the same chromosome can be selected more than once to become a parent. 



Crossover: The next step of the GA is the crossover operation. All the parent couples, which are 
selected from previous step, are able to produce two new chromosomes according to a pre-
specified, usually high, probability (pc). The crossover action chooses a single point and the two 
parents exchange genetic material by cutting and swapping their string after the single point. If 
no crossover takes place then the two new chromosomes (offsprings) are identical copies of their 
parents. Fig. 1(a) shows a crossover operation with a single point on the fifth bit. 
Mutation: The probability of mutation is usually small. For the binary chromosomes produced 
by crossover step mutation just change the bit 1 to 0 and 0 to 1 (Fig. 1(b)). The mutation 
procedure prevents the algorithm to be trapped in a local minimum.  
 
 GA moves from generation to generation and terminates until a stopping criterion is met. 
The maximum number of generations or a threshold in fitness value, may be used in order to find 
the optimize solution.  

 
              (a)              (b) 

 
Figure 1.   A crossover operator (a) and a mutation operator (b). 

 
Proposed Method 

 

Seismic Parameters 
 
 Accelerogram records describe the seismic excitation explicitly. However, due to their 
random nature it is very difficult to exploit their similarities. Therefore, a set of twenty seismic 
parameters have been used to represent the seismic excitation. In detail the following parameters 
are considered: the peak ground acceleration (PGA) amax, the peak ground velocity (PGV) vmax, 
the term amax/vmax, the Arias intensity (AI), the root mean square acceleration (RMSa), the strong 
motion duration as defined by Trifunac and Brady (SMDTB), the seismic power P0.90, the spectral 
intensities after Housner (SIH), after Kappos (SIK) and after Martinez (SIM), the effective peak 
ground acceleration (EPA) and its maximum value (EPAmax), the spectral total seismic energy 
input Einp, the cumulative absolute velocity (CAV), the seismic damage potential after Araya and 
Saragoni (DPAS), the central period (CP), the spectral acceleration (SA), the spectral velocity 
(SV), the spectral displacement (SD) and the seismic intensity as defined by Fajfar, Vidic and 
Fischinger (IFVF). The used spectral values are calculated for the period 0.88 s. It corresponds to 
the eigenperiod of the examined reinforced concrete frame. The definitions of the particular 
parameters are indicated in the literature [Andreadis 2007] and are not here repeated. The 
calculation of the parameters took place via a computer-aided processing of the accelerograms. 
In our method the GA attempts to find the optimum representation of the seismic accelerograms 
(minimum number of required seismic intensity parameters) in order to produce the best results. 



Genetic Algorithm Implementation 
 
 A GA was used to find the optimal feature set in order to produce the best classification 
accuracy of the proposed classifiers. First several subsets of seismic parameters have been 
examined. The classifiers have been trained according to these features. The fitness function of 
these subsets has been evaluated and the optimal set of seismic parameters has been extracted. 
 
 Let L=20 (twenty seismic parameters) as the number of feature descriptors. Assume a 
population of N individuals. In this research a population size of N=20 individuals has been 
used. A chromosome of L genes is an individual which represents the subset of seismic 
parameters. In the initial population p={x1,...,xN} the first sample x1 has all the genes equal to 1. 
The genes were allowed to take either a 0 or 1 as a value. A value of 1 implied that the 
corresponding parameter would be included in the feature subset. The parameter would be 
excluded from the feature subset if its gene value was set to 0. Here, the negative classification 
accuracy of the classifiers is equal to the fitness function of the subset. We use the negative 
classification accuracy because the algorithm selects as elitist individuals the subsets which have 
the lowest fitness value. The GA was allowed to run for a maximum of 100 generations. 
  
 The GA creates three types of children to the next generation. The first type is the elite 
children. These are the best individuals in the previous generation which are guaranteed to 
survive to the next generation. In this approach the elite children parameter was set to 2. Besides 
elite children, the algorithm creates the crossover and mutation children. The crossover operation 
recombines the best genes from different individuals in order to produce a superior child. After 
the crossover the mutation step was used to search through a larger search area in order to find 
the best solution. In each generation 80% of the individuals in the population excluding the elites 
were created through the crossover operation and the remaining 20% were generated through 
mutation. Using these parameters in our algorithm it is clear that for a population equal to 20 
there are 2 elite children from the previous generation, 14 crossover and 4 mutation children. 
 
The Neural Network Classifier 
 
 In this study an artificial neural network (ANN) was used for the classification of seismic 
damages. This network consists of one input layer, a hidden layer of 17 neurons and one output 
layer. The proposed classifier is a supervised feed-forward ANN with hyperbolic tangent 
sigmoid activation function. The first layer presents the inputs of the network. The number of the 
inputs to the first layer is not fixed. All the individuals from the GA are passed through the ANN 
in order to estimate the classification accuracy of them and their fitness function. Each time the 
inputs are equal to the number of genes which their value is set to 1. The number of output units 
is fixed to four, since four are the categories of possible damages. During the training of the 
ANN a set of representative vector samples have been used. Then the ANN was simulated using 
the entire set of seismic signals in order to evaluate the classification performance. Each time a 
seismic signal was represented in ANN with the set of seismic parameters according to the GA 
individuals. During the supervised training process whenever a training vector appears, the 
output of the neuron, which represent the class, where the input belongs, is set to 1 and all the 
rest outputs are set to 0. The training algorithm for the network is the Levenberg/Marquardt Back 
Propagation. 



  
The training steps in batch mode using the Levenberg/Marquardt Back Propagation algorithm 
are as follows: 

1. First present all inputs to the network and compute the corresponding outputs and errors. 
2. Compute the Jacobian matrix, J, where x is weight and biases of the network. 
3. Solve the LM weight update equation. 
 xk+1 = xk – [ JTJ + μI]-1JTe  (1) 

where, xk is calculated weight, xk+1 is weight value in the next step, μ is training 
parameter, JTJ is Hessian matrix, I is the identity matrix and JTe is the gradient (where e 
is the network error vector). 

4. Recompute the error using x +Δ x. If this new error is smaller than that computed in step 
1, then reduce the training parameter μ by μ- let x = x +Δ x, and go back to step 3  μ+ and 
μ- are predefined values set by the user. 

 
The Neuro-Fuzzy Classifier 
 
 The last intelligent system for the classification of damages in structures is a neuro-fuzzy 
technique. This system combines the fuzzy set theory and the ANNs. The neuro-fuzzy system 
has six layers. The first layer is the input layer where the inputs correspond to the subset of 
seismic parameters that represent the individual of the GA. The second layer implements the 
fuzzification process. Each neuron in the second layer represents a membership function. The 
key point of this step is the fuzzyfication of the inputs using four membership functions for each 
intensity parameter. Membership functions equations are presented below. 
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 The next layer of the classifier consists of fuzzy rules. Each neuron corresponds to a 
fuzzy rule. The number of rules is related with the volume of the training samples (training 
accelerograms).  The last three layers compose an embedded ANN. The inputs of the embedded 
ANN are the firing strength of rules according to the input seismic sample and the output 
declares the winning class. 



 
Application 

 
 The design of the examined reinforced concrete frame structure, shown in Fig. 2, is in 
agreement with the rules of the recent Eurocodes for structural concrete and aseismic structures, 
EC2 and EC8, respectively. The application is a sixth floor structure with a total height 19 m. 
The ground floor has a 4 m height and all subsequent floors 3 m. The cross-sections of the beams 
are considered as T-beams with 30 cm width, 20 cm slab thickness, 60 cm total beam height and 
1.45 m effective slab width. The distances between each frame of the structure is equal to 6 m. 
The eigenperiod of the frame was 0.88 s. In addition to the seismic loads, the following loads 
have been taken into consideration: self-weight, seismic loads, snow, wind and live loads. The 
structure has been considered as an "importance class II, ductility class M"-structure, with a 
subsoil category B, according to the design rules of the EC8 Eurocode. 
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Figure 2.   Reinforced concrete frame structure. 
 

 After the design procedure of the reinforced concrete frame structure, a nonlinear dynamic 
analysis evaluates the structural seismic response, using the computer program IDARC [Valles 
1996]. A three-parameter Park model specifies the hysteretic behavior of beams and columns at 
each member end. This hysteretic model incorporates stiffness degradation, strength deterioration, 
slip-lock and a tri-linear monotonic envelope. Experimental results of cyclic force-deformation 
characteristics of typical components of the studied structure, specifies the parameter values of the 
above degrading model. This study uses the nominal parameter for stiffness degradation and the 
focus is on the overall damage indices. This is due to the fact, that these parameters summarizes all 
the existing damages on columns and beams in a single value, which can be easily interrelated to 
single value seismic parameters. In this study the damage index of Park/Ang [Park 1985], the 
damage index of DiPasquale/Çakmak [DiPasquale 1989] and the maximum inter-storey drift ratio 
(MISDR) have been used. In addition, the MISDR has been used to express the architectural 
damages. The damage indices have been evaluated for 450 created synthetic accelerograms. 



Results 
 

 After the nonlinear dynamic analysis of the structure, for the entire set of artificial 
accelerograms, the global damage indices of Park/Ang (DIPA), of DiPasquale/Çakmak (DIDC) and 
the MISDR, have been calculated. The latter damage index have been used to express structural 
(MISDRstruc) and architectural damages (MISDRarch). According to the DIs, the damages were 
classified in four clusters. These correspond to the damage degrees low-medium-large-total. In this 
context, the damage degrees denote undamaged or minor damage-repairable damage-irreparable 
damage-partial or total collapse of the building, respectively. Table 1 classifies the structural and 
architectural damage degrees according to the used damage indices [Gunturi 1992].  
 
Table 1.   Damage degree classification.   

Global Damage Indices 
Damage Degree 

Low Medium Large Total 
DIPA or DIDC [-] ≤ 0.3  0.3 < DI ≤ 0.6  0.6 < DI ≤ 0.8 DI > 0.8 
MISDRstruc [%] ≤ 0.5 0.5< MISDR ≤ 1.5 1.5< MISDR ≤ 2.5 > 2.5 
MISDRarch [%] ≤ 0.5 0.5< MISDR ≤ 1.2 1.5< MISDR ≤ 2.7 > 1.7 

 
 In the present investigation a total set of 450 artificial accelerograms have been used. The 
representation of the artificial accelerograms has been examined using different subsets 
(individuals) of the twenty intensity parameters. Each individual is a 1x20 matrix. Due to the bit 
string type of individuals the total number of the possible candidate solution is 220. In this research 
a GA with a population of 20 individuals was employed and run for a maximum number of 100 
generations. This means that the GA searches for the optimal feature selection and tests up to 2000 
possible solutions. Using only the selection process in the GA without the crossover and mutation 
step it will create a negative effect on the convergence. On the other hand, using mutation alone is 
similar to a random search. The GA has been used one time for each one of the DIs. Two types of 
classifiers have been used in order to estimate the fitness function of the GA.  
 
 Table 2 shows the classification rates for the architectural and the structural damage degree, 
based on the MISDR and on the global damage indices of Park/Ang (DIPA) and 
DiPasquale/Çakmak (DIDC). Thus, the used procedure, the number of training samples (NOTS), 
450 or 300 alternatively, the number of non-trained samples (NONTS), these samples were not 
used during the training process, the number of essential parameters (NOEP), the number of well 
recognized samples (NOWRS) and the percentage of well recognized samples (POWRS) are 
provided. It must be noticed that the number of samples used for the classification process, was 450 
(NOTS+NONTS) in all the cases. Here, it is recognized that the use of Genetic Algorithms 
improved the percentage of well recognized samples (POWRS) in most cases. In the cases where 
the use of GA provided a lesser POWRS in comparison with the pure ANN procedure, the 
reduction was lesser than the percentage reduction of the number of essential parameters (NOEP). 
In addition, the use of genetic Algorithms reduces NOEP in all the cases. Thus, it can be concluded 
that ANN and NF procedures, combined with Genetic Algorithms provide high damage 
classification rates (up to 100%). It is obvious that the proposed method can be applied to any other 
structure type, to alternative damage indices and/or different seismic parameters, on the condition 
that the proposed methodology steps are applied.   



Table 2.   Classification results using intelligent techniques. 
DI Case Procedure NOTS NONTS NOEP NOWRS POWRS 

MISDRarch 

1 ANN 450 0 20 442 98.2 
2 GA-ANN 450 0 13 450 100 
3 ANN 300 150 20 422 93.7 
4 GA-ANN 300 150 10 449 99.7 
5 NF 450 0 20 441 98 
6 GA-NF 450 0 12 450 100 
7 NF 300 150 20 416 92.4 
8 GA-NF 300 150 12 422 93.7 

MISDRstruc 

9 ANN 450 0 20 406 90.2 
10 GA-ANN 450 0 13 417 92.6 
11 ANN 300 150 20 383 85.1 
12 GA-ANN 300 150 14 390 86.6 
13 NF 450 0 20 406 90.2 
14 GA-NF 450 0 13 415 90.2 
15 NF 300 150 20 386 85.7 
16 GA-NF 300 150 11 389 86.4 

DIPA 

17 ANN 450 0 20 446 99.1 
18 GA-ANN 450 0 13 408 90.6 
19 ANN 300 150 20 385 85.5 
20 GA-ANN 300 150 12 392 87.1 
21 NF 450 0 20 448 99.5 
22 GA-NF 450 0 13 410 91.1 
23 NF 300 150 20 404 89.7 
24 GA-NF 300 150 14 403 89.5 

DIDC 

25 ANN 450 0 20 412 91.5 
26 GA-ANN 450 0 13 410 91.1 
27 ANN 300 150 20 390 86.6 
28 GA-ANN 300 150 15 396 88.0 
29 NF 450 0 20 422 93.7 
30 GA-NF 450 0 13 404 89.7 
31 NF 300 150 20 386 85.7 
32 GA-NF 300 150 11 397 88.2 

 
 
Table 3 shows explicitly the essential parameters, in all the cases where the use of Genetic 
Algorithms reduces the number of the initial used twenty seismic parameters. The initial 20 seismic 
parameters, were reduced in a range between 15 (case 28) and 10 (case 4). That means a reduction 
between 25% and 50%. In addition, it is recognized that the most important parameters are the 
spectral displacement (SD) and the seismic damage potential after Araya and Saragoni (DPAS). 
The first mentioned parameter appears in 13, while the second one appears in 12, of 16 
maximum possible, cases. 
 
 



Table 3.   Essential intensity parameters.  
Seismic 
Parameter 

Case  
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Sum

PGA  X  X X X  X  X  X  X  X 9 
Arias   X X X X   X  X X X X X  10 
PGV X X  X X X X   X  X X  X X 11 
PGA/PGV X X X   X  X  X X    X X 9 
CAV X   X X  X X X X  X X X X  11 
RMS   X X  X X X X  X   X X X 10 
SMDTB X  X X X X    X X X X X  X 11 
P0.90 X   X  X X X X X X X X  X  11 
SIH X X X X   X  X   X X X  X 10 
SD X  X X X X X X X X X  X X X  13 
SV X    X  X    X X  X  X 7 
SA X X   X X  X X X  X X X X  11 
Einp  X X  X X  X X X X   X X  10 
SIK  X X X   X  X  X X    X 8 
EPA    X X X   X   X X X X X 9 
EPAmax X  X  X X X X  X X  X X X  11 
IFVF X  X    X  X  X X X X   8 
DPAS X X X  X X X X  X  X  X X X 12 
CP  X   X X X X X X X  X X X  11 
SIM X X X X   X  X  X X X   X 10 
Sum  13 10 12 12 13 14 13 11 13 12 13 14 13 15 13 11  

 
 

Conclusions 
 
 Alternative intelligent techniques for the classification of seismic damage degrees based 
on seismic parameters are presented. The focus is on the use of Genetic Algorithms, to improve 
ANN and Neuro-Fuzzy procedures. The proposed procedures have been applied to a six-story 
reinforced concrete frame structure designed in accordance to the rules of the EC2 and EC8 
Eurocodes for reinforced concrete and antiseismic structures, respectively. A set of 20 intensity 
parameters provided by artificial accelerograms have been applied for the training and for the 
classification phase of the models. In addition, the global damage indices of Park/Ang, of 
DiPasquale/Çakmak and the MISDR, have been used. The latter DI has been used to express 
structural and architectural damages. Four degrees have been used (low-medium-large-total) for 
the classification of the seismic damage. The numerical results show a significant reduction of 
the essential seismic parameters (from 25% up to 50%) using Genetic Algorithms in combination 
with ANN and Neuro-Fuzzy procedures. The mean correct classification result of all the used 
intelligent techniques is 91.54%. Thus, these results lead to the conclusion that the proposed 
techniques are fast and confident numerical tools for the estimation of the structural and 
architectural post-seismic damage status of buildings. 
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